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IN THODU CTI ON ------ 

It is. t h e  purpose o f  this t e x t  t o  i n s t r u c t  engineers in the design of 

opttmm l i n e a r  system. 

l i n e a r  system which performs a desired linear operation oriththe minimum mbm 

square error-  

disturbance of a s i q l a  s t a t i s t i c a l  nature, 

dn optimum l i n e a r  system is defined as an x%5aaeds  

The basio cause for the systom e r r o r  is usually an external 

System e r r o r  need not be caused 

by a disturbance, .however; the design technique is a l s o  appl icable  to tran- 

s i e n t  design of syetem with l imited power capabil i t ies .  

The presentation of the  technique is di rec ted  toward t h e  design and anal- 

ysis of mobile-vehicle cont ro l  systems, systems in which t h e  cont ro l  unit and 

the element control led (the E h i c l e )  are independent except f o r  rad io  or ap- 

t ical  links, 

may en te r  the system eas i ly ,  

best control system under the circumstances, and second, the analysis of pr- 

formance data t o  determine the degree of success achieved, 

sense, this ?a r t i cu la r  problem is t he  sum of many problems including f i l t e r i n g  

s igna l s  from noise, dssigninf: s tab le  control  systems, preventing internal 

Noise, disturbances o f  m y  kind; and de l ibe ra t e  enemy jamming 

The engineer's job is first,the des i@ of ths 

In a very real 

sa tura t ion  of a servomechanism, and analyzing noisy  records, 

c s t e s  the order  and re la t ionship  of the top ics  which d e s c r i h  the new 

to chique , 

Figure 1 in&- 

The technique and der ivat ions a re  described in t e r m  of Laplace t ransform.  

The author has assumed t h e  reader t o  have a working knowledge of Laplace trans- 

forms roughly equivalent t o  that a t ta ined  by reading Gardner and Barnes, 

Transients i n  Linear Svstem." No knowledge o f  s t a t i s t i c s  is assumed, 30 
n 

s t a t i s t i c s  is p-esented i n  th i s  development which cannot be learned in a 

few ninutes. 
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Certain portion8 o f t h i s  t e x t  must be understood thoroughly i n  order 

that the  engineer be able t o  do more than plug In and grind out t he  hmda- 

mental equationr 

The signifioanoe of the equation w i l l  be r ead i ly  appreciated the develop= 

ment proceeds, but  i t  is n o t  always simple to formulate the problem at hand 

in such a way a s  t o  make the equation upplicable. 

the reader  nust understand SectEans I - X before reading f u r t h e r  sections. 

Sections xf, XII, and XI11 present the minimum theory necessary t o  solve 

problems, 

Regardless of background, 

Section 1uv out l ines  the remainder of the t e x t  i n  order that  the 

reader  may decide whioh f u r t h e r  sections a re  d i r e c t l y  r e l a t e d  to his h m d i -  

ato problem. 

The elrlstence of the technique is d i r e c t l y  a t t r i b u t a b l e  t o  Norbert 

Wiener, Professor of Xathematics a t  M.I.T. 

what  s imi la r  r e s u l t s  but i n  a less useful form. 

extonsions of Wiener's work were done i n  many places by c a y  different people, 

all a t  about the same time. 

sense of being independently derived a t  J.P.L. 

A, 8, Xo'Lmogoroff derived some- 

N i t h  few exceptions, all 

The derivations i n  this text a r e  o r ig ina l  in the 

T h i s  text could well have 

been wri t tcn  by several  other engineer, at J.P.L. 

and R, J, Parks i n i t i a t e d  and guided the  work. C, W. B e r m ,  R .  E, C o n ,  E. 

Rcchtin, W, F, Sampson, R. 11. Stewart, and Do C, Youla continued the develop- 

ment, This t e x t  i s  one r e s u l t ,  

I", H. Pickering, F. E- Lehaa, 
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Some amazingly v io l sn t  arymente can ensue on the  subjeot of optimi- 

Because of the great var ie ty  of  possible systems, all performing sat ion.  

t he  same task,  it i a  d i f f i c u l t  t o  get agreement even on the r e l a t i v e  valuer 

of cost, r e l i a b i l i t y ,  simplicity,  and accuracy. T h i s  disoussion will be 

l imited t o  coneiderations of accuracy for an extremely inportant reason - 
when in te r fe rence  is present,  it is not possf-ble t o  make a system as accurate  

as we please, 

a system as reliable as desired, bu t  we aro d e f i n i t e l y  l imi ted  i n  the at- 

'Re (possibly) oan increase c a s t  u l thout  limit, and can n a b  

t a inab le  accuracy for t he  system. 

depends primarily upon the cha rac t e r i s t i c s  of the input  funct ions -- loosely 
speaking, upon the cha rac t e r i s t i c s  of s i g n a l  and noise -- and is r ea l i zed  

only by t h e  optimum system. If t h i s  l imited accuracy i s  insu f f i c i en t  for 

our purposes, we must e i t h e r  change the  input cha rac t e r i s t i c s  or  abandon 

t h e  attempt, No m o u n t  of cost ,  complexi ty ,  or ingenuity can yield any 

impr ovememt, 

The l imi t ing  aocuracy of t h e  system 

The existence of an optimally-accurate system and a knowledge of i t s  

associated " i r reducible  error" is useful aven though such a system may 00- 

casional ly  be too complicated, cost ly ,  and/or unrel iable  t o  bLild. Such a 

system provides a good standard f o r  evaluation of proposed subs t i tu tes .  

i e  of ten possible t o  design subs t i tu tes  with accuracies within a f e w  percent 

oi' t he  l imi t ing  accuracy. 

It 

Let us define an optimum system as optimum i n  M accuracy sense. Again, 

t h e r e  i s  much room for differences of opinion. 

is t o  t ransmit  information i n  the prezsnce of noise, systems of d i f f e ren t  

For example, i f  the problem 



r e l a t i v e  acouraciea may be designed depending on the  coding (AI:, FIL,  PCEL, ran- 

dom) and upon t h e  channel noiso level. 

number o f  p rao t ioa l  oodes may be s t i l l  fu r the r  increased. However, for eauh 

transmitted code and asaunod intorference,  there s t i l l  e x i s t s  an optimum re- 

If the  information nay be quantized,the 

. oeiver design. The problem becomes even more in to re s t ing  if the interfereuoe 

l a  assumed i n t e l l i g e n t ,  i.e., i f  the  interferenco is always of t h e  worst 

possible  type with respect  t o  the seloctcd code, 

such problems in the theory of games, but  w i l l  be r e s t r i c t e d  t o  optimum systems 

with respect  t o  s p o c i f i e d  inputs. 

This t e x t  w i l l  not  consider 

If a l l  inputs t o  a system a r e  coip le te ly  spec i f ied  functions of time ex- 

cept  for ce r t a in  pa rme te r s  such as absolute mgni t sde  or exact t i c h e  of occur- 

ronce, elimination of t he  e f f ec t s  of any of t h e  individual  inputs  may usual ly  

be accomplished ident i sa l ly ,  

interference elimination, 

eliminated by addition of an equal and opposite 60 cycle tone to the output, 

60 cycle "hum-bucking" is one example Qf complete 

Output hum cons i s t s  of a pure 60 cycle tone which is 

As 

another i l l u s t r a t i o n ,  i f  the b p u t s  are exac t ly  known except f o r  t h ree  constant.  

parameters, t h ree  operations are usually zuf f i c i en t  t o  y i e l d  error-froe per- 

formance, 

unhovrns that exact scparations ai-o impossible, 

If tho inputs a r c  s t a t i s t i c a l  i n  nature,  however, t he re  a r e  so mny 

me can only hope for good 

perf orxnance averaged over many triese 

It is inpor tan t  that  we l z o n  bcforchar.d Ln what mi;. t he  var ious inputs  

d i f f e r  fro= each othzr, If a l l  ir,puts evcer the system a t  the same point c.112 

a l l  arc alike, separation is impossible, 

ferences,  the b e t t e r  t h o  separation, Inputs   my be dcscribed by t h e i r  exact 

time dependence, by t h e i r  e q e c t o d  time dependence, by t h e i r  complete proba- 

Conversely, the 'greater t h o  dif- 

b i l i t y  functions, or by t h e i r  corrclat ton functions (cr spec t ra l  dens i t ics ) .  
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S t a t i s t i c a l  descr ipt ions a re  comparatively weak, but they ray he the  only de- 

scr ipt ions available. To quote Yiiener, " S t a t i s t i c a l  prediotion i s  e s sen t i a l ly  

a method of' ref ining a prediction which would be perfec t  by i t s e l f '  i n  an idea- 

l i z e d  c a m  but whioh i: aorrupted by s t a t i s t i c a l  errors, e i t h e r  i n  t he  observed 

quant i ty  i t s e l f '  or i n  the  observation. 

metr ical ly  and ana ly t ica l  f a c t s  analyt ical ly ,  3eeving only s t a t i s t i c a l  f a c t s  t o  be 

predicted statistically. ' '  

No complete the specif icat ion of an optimum system by agreeing on a nathe- 

Geometrioal f a c t s  must be predioted geo- 

matical description of system accuracy. 

e i t h e r  t h e  probabi l i ty  functions of t h e  inputs, or on the type of operations per- 

fo rned , ' i t  is possible t o  specify t h e  accuracy of t h e  system i n  many d i f f e r e n t  

ways, 

form t h e  observed input by t h e  addition o f  samples selectsd f r o m  horn d i s t r i -  

butions i n  such n way t h a t  t h e  3oint probabi l i ty  of occurrence of the smples 

If no r e s t r i c t i o n s  a r e  placed upon 

For example, using t h s  "maximum likelihood" c r i t e r ion ,  one attempts t o  

is maximized, The se lec t ion  process may wel l  be non-linear. A l i nea r  operation 

is describable by an equation of t h e ' f i r s t  degree i n  t h e  dependent variable.  

Such equations may bo time-variant, in tegro-d i f fe ren t ia l  o r  difference,  but  may 

not  involve operations on ot'ner than t h e  first. power of t h e  dependent variable,  

Accuracy specif icat ions involving probabi l i ty  functions generally lead not  to 

e x p l i c i t  spec i f ica t ion  of the operation t o  b6 performed, but  only to ce r t a in  

c r i t e r 5 a  on such operetio:is, The f i e l d  of non-linear mathecstics is not  yet 

in a condition t o  'be ext.ensively exploited by ongineers, 

problem i s  approached independently. 

t h i s  date. 

Each non-linear 

No general  d i sc ip l ine  is ava i lab le  a t  



If we l i m i t  ourselves t o  linear systems,+ not  only do we enter  a vrel l -  

developed field, b u t  we can a l so  define system accuracy in a sinrple way. 

x(t) = desired output at t i m s  t 

Let 

x o ( t )  = actual output a t  t i m e  t 

* -  (t) = x( t )  - x,(t) = error at timo t 

Lot UO repea t . the  experiment nnny times and observe the performance a t  tim t. 

The performance w i l l  be different for Gach experiment s ince the input in te r -  

ferences w i l l  never be exac t ly  a l ike,  Not knowing beforehand the exact time 

dapendeuce of the interference,  we can never guarantee perfect  porfomance 

(zero error)  for any one experiment. After observing many sxperinlents, hmmr, 

we c e r t a i n l y  nmt to not ice  good overall  performance. F;e des i re  no e r r o r  on the 

averaga. Let t ing a bar s igni fy  experimental (ensemble) overage, we require. the 

condition: 

Systems sa t i s fy ing  this condition are ca l led  "unbiased." 

LC good measure of tompartitive performance of various systems, 

tern will y i e l d  

Let us keep this zondition as ti desired fee ture  and inves t iga t e  several  addi- 

t i o n a l  masuros of sys i cn  accurecy. Inasmuch as negative errors are ?robably 

as ser ious as posi t ive e r rors ,  t h e  measure should so indicate .  

The condition i6 not 

Almost any sys- - c(t) = 0 inasmuch as the average in te r fe rence  is usual ly  zero, 

*The r e s t r i c t i o n  to l i n e a r  systems i s  not as  s t r ingen t  as it might soom. 
turbances projuced by most jnterfercnce phenomena are characterized by Gaussian 
d i s t r ibu t ion  funciions. 
an output which a l so  has a Gaussian d i s t r ibu t ion  function. I f  we r e s t r i c t  our 
desired operations t c  l i n sa r  operations ( i ,e . ,  do  not look f o r  t h e  square of 
t h e  i n ~ u t ,  ttc.), it has lxcn shown that  for Gaussian typo input  nmct ions  the 
optimum l i n s i r  system i s  a l s o  t h e  o p t . i m i  of a l l  systems, 
standard descr ipt ions of accuracy reduce t o  the  one presented here. 

Dis- 

Any l inear  oparation on such disturbknces w i l i  y i e ld  

In addition, a l l  



Large errors are probably more  serious t h m  small errors.+ Two measures of 

accuracy are of' particular in te res t :  

c 

Of them, €2 (the man  squtlro or variance of [- 

extensively developed, and leads t o  linoar systems, 

tremeiy d i f f i c u l t  rrsthematically, probably y i e l d s  performance similar t o  

and yet probably requires non-linear operations. 

), is in wide use, h a  boon 

The seoond,\Ei , is ex- - 
, 

Thus our definit ion of an 

optimum system:: AN OPTIMJII LICFM SYSTDJ IS DEFINZD AS AN UNBIASB), LINEAR 

*It might be agreed, howwer, tha t  system design should ignore a fmtostlceKy 
la ige  error on t h a  basis tht if such M e r ro r  does occur, that  particular e=- 
parirrsnt is worthless anyway, and should not be allowed t o  influence our d_ec.:sion -- 
m an optinum systom. 
etco 
x a k s  and disregard errors close 50 zero. 

Such arA arpnent serves to reject  c r i t e r i a  such as:" ? e 
A system opern?ing with an e criterion would tend to avcrage no i se  
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I1 ELA?JENTARY CALCULUS OF VARIATIONS 

The optimum 8ysmm has b-n defined as t h a t  system which minimizes a par- 

t i o u l a r  quantity,  the mean square error .  If our system is completely specified 

except f o r  one parameter suoh as the  value of a par t i cu la r  r e s i s t o r  or t h e  gain 

of a par t i cu la r  s e n 0  loop, the solution f o r  an optimum system is qu i t e  simple. 

We express tho error CT 
2 

a8 a function of t he  var iab le  parameter (r) and 1180 

the usual  calculus  technique 

t o  find t he  minimum. This equation spoci f ies  a s ta t ionary  ?oint  only (maximum, 

minimum, o r  i n f l e c t i o n  point) and therefore  a check is usual ly  made of the sign 

of d" v2 / d  k2 If the sys- 

tern is specif ied except f o r  possibly four  or  f ive  parameters, the general  pro- 

A posi t ive sign indicates  a t r u e  minimum. 

oedure is t he  same. T r u e  minimum can be real ized proTiding t he  f o u r  or  five 

. simultaneous equations 

can be solved properly. It I s  not generally true, hcwever, that by making 

more and more parametors var iable  we corn nearer  and nearer  t o  t h e  optimum 

s y s t e m .  The vory a c t  of writ ing the. error as a function of c e r t a i n  parameters 

a l s o  defines tho form of t h e  system. For example, calculat ion of t h e  effect 

of vorying the value of a given r e s i s t o r  depends upon knowledge of t he  rest of- 

- 

tho c i r cu i t ,  I n  par t icu lar ,  there i s  no way of Icnoring which of t h e  c i r c u i t s  

below w i l l  y i e ld  t h e  bsst p e r f o r m c e  without laborious calculation. ?Lore 

impartant,  t he re  i s  no way o f  knowing whether t h e  bes t  c i r c u i t  is even included 
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in t h i a  set. 

FIGURE 2 
Exanples of Circuits with an Adjustable Element 

Even making a l l  the elements *ariable will serFe no use fu l  purpose: There l a  

no gua radee  that the correct type element is located i n  eaah branch. 

It i s  probably not  surpr is ing that a so lu t ioa  exists which not only giver 

t h e  form of t h e  best c i r c u i t ,  but also  t h e  values  of  all t h e  elements in it. 

It i s  a l m o s t  the engineer 's  creed that nothing I s  impossible, 

p r i s i n g  (1) that t h e  concepts and techniques are qui te  simple and ( 2 )  that most 

It may be sur- 

of there coccepts and techniques a r e  250 years old. 

Ths magic mathenatics is the  calculus  of var ia t ions,  I t s  prime uses it 

seem, have been t o  prove that  t h e  shor tes t  distance between two poin ts  is a 

s t r a i g h t  line, o r  t o  derive equations of motion ~f a system i n  pecul ia r  00- 

ordinate  SyEtMm, 

pl iceted,  

For our purpozes both such problems a r e  unnecessarily com- 

The basic  problem i n  the  calculus of va r i a t ions  is t he  minimization 

of an i n t e g r a l  whose integrand i s  some function of the  system, As we s h a l l  see 

l a t e r ,  t h e  mean square e r ror  of a system is expressible a s  an integral whose 



'integrand do;mds on thc s y s t ~ m  transfor funotion. $'or the present, the exaot 

way in whioh we obtain somo integral8 at3 are presented below is not  important. 

Of 1rmdiot.s importance i s  the  questions 

E t o  minimize tho value or th9 Integral?* 

what should H ( s )  be an e function of 

Tlm basic .logic of'the calculus of variations i s  as follows: 

1, 

2. 

3, Add t'((s) to H, (V  , but control the addition by a numerical 

Assunme that the correct a m w e r  i s  %(e). 

Pick out any other function of 8, %(s). 

variable E . Th variable f, i s  not a function of 8. It i s  the 

only variable, however, since both )Jc (S)  hnd 4 ( 5 )  are 
s - 
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presumed known. Then write H(s) near Ho(s) ae: 

4. Inveetigate the  effect  of ohanging E on the integral of 5ntereh 

Since we have assumed that  m know %(a) and l ( 8 )  we oould, forrrally, 

a t  least, p lot  the integral (I) as. a funotion O f f  

- 

0 & 

F I G U R E  3 
Value of t h e  LIinimized In tegra l  as a Function of the  Variation & 

By hypothesis I for E=O 

equal to the Tight answer f b ( 6 ) .  

Pick out many 2") a n d  p l o t  the  r e su l t i ng  1'8. 

is the  m i n i m  I since H(s) for &SO is 

5. 

i 

& 
FIGUHE 4 

Variation of the Idinimized Integral a s  a W c t i o n  of E, andq!(S) 



3 .  IQalre th is  oqimtinn trin regard les s  of )2 (s) 

4. If ncccssaq-, chcc!: tho si;n of t!i3 sccnnd derivative 
2 2 

d I/ d E  

&.ample: 

Iio(s)  = + 8 
I 
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The posi t ive s i p  yie lds  a minimum value for the  integral .  

Problem 1 a: 

Problem 1 b: 

Find the funotion V(s) which minimizes I 

Find the function H(s) which minimizes 

in the text. 
3 - 

- 
B 

I =  I 11 + [dt:')]2] d s  
A 

Problem 2: I t ' i s  a l s o  possible t o  solve normal calculus minimization prob- 
lems by the var ia t ional  method. The va r i a t iona l  method used in 
this way is somewhat like using a cannon t o  k i l l  a moth, but the 
use is titill legitimate. 
12 is an a rb i t r a ry  value r a tho r  than os a r b i t r a r y  function. 
Solve for a minimum of 

The only difference in logio i s  that 

y = x2 - 2x 

using tho var i a t iona l  technique. 

For t he  mathemtical  philosophera among the  readers,  the i n t e g r a l  i s  not  

the only mathematical operation t o  which t h i s  technique i s  applicable. Any 

operation i s  va l id  which reduces tho performance of a system t o  a single num- 

ber. 

as j o i n t  and marginal d i s t r ibu t ions  i n  probabi l i ty  problems. 

B summation of d i s c r e t e  values is thus legi t imate ,  as a r c  such parameters 



EP 204 

-15- 

IIJ COIJSTIWNTS 

A coi13traint i s  a res tr i c t ion  or condition imposod on the solution of a 

problom. 

fomance or increaso it, dopending on the particular constraint. 

Constraints i n  optirni eation theory may either reduce system per- 

Constraints 

such as 

1, The available power i s  limited a t  oertain points within the system, 

. 2. The system m u s t  be physically realizable,  and 

3. Certain functions of t i m e  (polynomiaIs or sine waves) mst pass 

through thc  s y s t e m  without d is tort ion 

w i l l  a l l  chang ;sten performance from that  of the  unconstrained system, 

Constraints are er,countered on all l eve ls  of calculus.* A typical 

calculus p r o b l e m  involvtng a constraint is: 

That i s  t .he minimum value of 

y = q 1 - (x-1) 2 - t 2 

uncier the condition 

x + y + z  = 1 1  

Of more direct interest t o  us i s  the analogous problem in integral  form: 

u d e r  the constraint 
1 

* Sokohikoff ,  Advancod Calculus, page 327 



etraint 1 
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i n  the same way that 11 was minimized alone. The result  

The oonstants 

I3 = 1,2. 

and 4 are evaluated from the equations 

Notice that  the minimization prooedure i s  eymetr ioal  

There i s  no difference, therefore, between minimicing 13, 

EP 204 

of the minimization 

12 = 2,o and 

T3 fixed, between minimizing I2 with Il and I 

f 

a problem; sy-mm3t1-y will be used i n  section XIX in precise ly  this way, 

fixed, and between minimizing 

This symmetry i s  oocasionally useful in re-stat ing 

3 
with 'I1 and I2 fixed. 3 

Problem 3 : Find the  H(s) which minimizes -ti, t AIS 2 a- I- 

c) 

under the oonstraint 

- d s  - 
0 a b )  I2 

Problem 4: Find the h ( t )  which minimizes 

- ," h 2 W  
-T 

cr2 - 
under the constraints 

+T 
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IV, CURVE FITTING AND WEIGHTING FUNCTIONS 

The idoa of optimizing system porfonnance is almost a s  old as  the 

calculus itself. One Qf t h e  f i r s t  problems i n  s t a t i s t i c s  is t h a t  of f i t t i n g  

the  bes t  ana ly t ica l  curve t o  a s e t  of da ta  points. 

detailed study because it lends logically t o  such concepts as weighting 

functions and matched f i l t e r s .  

manner first. 

This problem is worth a 

Let us solve the problem i n  the c l a s s i c a l  

Later we shall aolve the  same problem using v a r i a t i o n a l  

techniques under constraint ,  Most  of tho bas i c  ideas  of optimization 

theory will appear i n  t h e  course of these  solutions. 

A. Classical  Statement of t h e  Curve F i t t ine :  Problem 

Every optimization problem requires c e r t a i n  a p r i o r i  assumptions. 

The assumptions in the c l a s s i c a l  curve f i t t i n g  problem are: 

1. 

function. 

A mechanism exists which is  producing a per fec t ,  d is turbance-free 

( A n  o s c i l l a t o r  is producing a per fec t  s ine  wqve,- An objec t  

is moving under no external forces.) 

2. 

a r e  unknown, 

variable.  

The form of this function is known, although ce r t a in  parameters 

(Let the function be x( t )  where t is the independent 

Then some examples of funct ional  form might be 

x(t )  = a + b t 

x ( t )  = a sin ( t + b ) 

where the parameters a and b are t o  be determined from the data.) 

3. 

of S t a t i s t i c a l  nature. In  pa r t i cu la r  the  disturbance has zero average 

2 
value and a 0 ,  

the disturbance remain the same throughout t h e  i n t e r v a l  considered, 

Our d i s c r e t e  observations of x ( t )  are perturbed by a disturbance 

mean square value, The s t a t i s t i c a l  cha rac t e r i s t i c s -  of 
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4. The cr i ter ion for optimization ia.the ninindzation of 

whero K i s  the to ta l  number of observation points,  x(k)est.mate 
ie the  functional form with appropriately chosen parameters, and 

x 

represents t he  observed v81uea. 

1 - 
4 

k 

FIGURE 5 
Typical Data P lo t  

The standard presentation of  this curve f i t t i n g  problem usually mentions 

a f i f t h  assumption but seld >m adds an explanation. The f i f t h  assumption: 

%he disturbance i s  such that  a l l  observations of it are independent. 

assumption makes the overall f i e l d  of discrete  s t a t i s t i c s  considerrhly simpler, 

This 

but immediately precludes the extension t o  the  continuous case. 

tinuous case, the samples are in f in i t e ly  close together.  

adjacent samples are s t i l l  independent under these conditions i s  n o t  only 

Tn the  con- 

A statement t h a t  
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unbelievable, it also l eads  to mathematical oxplosiona. 

use of the independonce assumption i s  in the proof t h a t  the  optimization 

The most importmt 

oriterion of assumptian 4 y i e l d s  the bes t  possible discrete estimator in  the 

ensemble mean square sense.-  L e t  us  deliberately ignore t h e  independenoe 

assumption for the momnt and note the consequences lator. 

The problem in c u m  f i t t i n g  can thus be stated as fol lons.  Under the 

four given assumptions, what i s  the best  xeatimate such that we minimito 

B. Classical Solution of  the Curve Fi t t ing  Problem 

For purposes of i l l u s t r a t i o n ,  l e t  us assume that the d a t a  points are 

squally spaced and t h a t  the assumed ilrnctional form i s  

x(k) = a + b k  
rt 

The estimated value of x(k) is given.by x 

x(k)* = a* + b% 
2 The mean square error is given by , 

e =  2 2 L a* + b*k - 
k = l  

The mhim value of which i s  given by 

and a 6 2  = o  
b bX 

These operations y i e l d  
K 

o =  7 d- la* + b*k - X(k)data 3 
k = l  



and 
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K 

t = i' 
* 

Solving f a r  the parameters a* and b 

C. Fhtension of t h e  Class ica l  Solution 

The above equations specifying t h e  estimated values o f  the parameters are 

so complex i n  appearance 

Noting that IC, 2 k and z k 2  are all constants, we may r e - w r i t e  the equations 

as 8 

t h a t  an extremely important concept is often missed. 

K 

k =  1 
7 )  

k = l  

*ere Aa, Ba,*A,, and I& 

est imat ing the parameters thus consists i n  weighting each da ta  point according 

are constants dependent only on K, The process of 

t o  an appropriate weighting function L A  - B k] and summing over a l l  d a t a  

points. It i s  i n t e re s t ing  t o  superimpose the  weighting functions on t h e  data,  
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Xdata 

‘b 

0 

ma 

b+ 

for a* 

FIGURE 6 
Weighting Functions 

The s imi l a r i t y  in form between the weighting funct ions and t h e  funct ional  

form of x(k) occurs whenever the assumed f o r n  of x(k) i s  o. sum of funct ions 

with unknown coef f ic ien ts  (and tho noise samples are independont). 

Problem 5% 

Problem 6: 

Atsumo a form x(k)  = a fljk) 
fZ(k) a re  h o r n  functions of  k, Show t h a t ,  as far a s  t h i s  
typo of optimization i s  concerned, the  weighting f’unctions f o r  
a* and b* are  of a similar func t iona l  form. 

+ ?I f Z ( k ) ,  where fl(k) and 

A t e x t  i n  s t a t i s t i c s  c1cti.m t h a t  tho problem of estimating a 
and b .in t he  equation x(k)  = a e-bk can be accomplished by 
taking logarithms of both sides of t hc  equation and t r e a t i n g  
the  system as l inear.  .Show t h a t  t h i s  process does not  minimize 
Z (Xestimate -x datal2 as  was required f o r  the b e s t  estimate. 

This s imil t i r i ty  i n  form of the weighting funct ion t o  the  assumed data funct ion 

-a11 a;- -Aar frequently i n  l a t e r  discussione, The s i m i l a r i t y  is again evident 
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i n  matched f i l t e r  networks, f ini to-ordcr  f i l t o r  networks, and cross-correlat%on 

de t o c ti on ne tvro r ke . 
D, TJeon Square Error o f  t h e  Es t ima ted  Paramtors 

If tho disturbance Froducing the  data s c a t t e r  is strong, IVC should expect 

our ostimutes of nr.:.amotcrs t o  be much l e s s  accurate  than if t h e  disturbance 

13 weak. In  pa r t i cu la r ,  if 58 is the moan squnrs value of the data sca t te r ,  

Wb is the  weighting function fo r  t h e  parameter b, and t h e  da ta  s c a t t e r  samples 

are independent, then the w a n  square e r r o r  on b is given by: 

Proof: 

cstimate f o r x h e  parameter b under theso noise conditions is 
Assume no s igna l  x(k) present, only t h e  noise disturbance x The n 

If this experiment is pcrformcd many times, t h e  average bn will bc zero 
xn(lc) is zero. The mczn square vdnc of b is . n  

k =  1 j = 1  
Tho r i g h t  hand s ide  of  t h -  equation is del ibera te ly  written as t he  product 
of  tvro sums i n  d i f f e ren t  rnriablcs t o  emphasize t h e  order i n  which t h e  
operations are performed. 
w i t i n 6  the  nean square value of bn as 

The t r i c k  is a common one and is u s e h l  i n  re- 

- 
- - 9 mb(k) [ zl wb(j) x,(k) x,(j) 3 ( 9 )  

2 
n d 

k = l  

b 

Tho x (k)  may be noved i n t o  t h e  j summation since it is a constant with 
rospeet to j, The bracket is performed f i rs t ,  y ie ld ing  a function of k 
which i s  multiplied by \Yb(k) and summed i n  k. 
nf fec t s  only t h e  xn's because the  11 ' 5  a re  t h e  sane f o r  ~ v c r y  expcrincnt. 

The averagixg q x r n t i o n  

b 
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The avorngo product ~ ( k )  xn( j) 
of x . This correlat ion function v d l l  be discussed i n  d o t n i l  i n  l a t e r  sections. 
For ?his proof, it i s  only necessary t o  noto t h a t  such an avcrngo product fo r  

is cal led the  auto-correlation function 

independent x 1 s  is zero wloss 
not  chi:ngo durfnp ,  the  experimont 
--.- 

s c a t t e r  w i l l  be the same f o r  a l l  

- -  
k = j. Providing t h a t  the s t a t i s t i o s  do 
o r  between oxpcrimcnts, t h e  mcan square da ta  
points k. I n  o the r  words, 
-- 2 constant independent ",(SI = n = of choice of k. 

The m a n  squaro e r r o r  i n  estimating the 
dent  noiue samples is t k . z  givcn by 

parrullzter b i n  t h o  presonce of indepor- 

K 

k = l  [ ( k j 2  

Any equation of t h e  form 

b =  
k = l  

is l i n e a r  in x(k), 

t h e  form of equation 10, 

Conversely, a l l  l i n e a r  operations may be wri t ten  i n  
2 

b The c r ro r  equation, 5 , thus appl ies  t o  any 

l i n e a r  operatio3 in the  prcsonce of indepandcnt no ise  samples of mean square 

value CY . 2 

n 
E. Solution of t h e  Curve F i t t i n g  Problem by t h e  Calculus of Variations - 

The c l a s s i c a l  soiut ion t o  the curve f i t t i n g  problem is an application 

of the standard calculus. Attempts a t  extending t h e  c l a s s i c a l  technique, 

however, usual ly  rosult i n  such cumbersone m t h c m t i c s  t h a t  t h e  bas i c  logic 

is obscured. The calculus of  var ia t ions  technique does much t o  remedy the. 

s3.tuation. 

mean an easy understanding of t he  TJiener der ivat ion and t h e  various re la ted  

cons t r a in t  problem8 (f inite-order f i l t e r s ,  matched f i l ters,  povfcr level 

con s t ra i n t  s , and 3 e rvome chani sm o p t  i m i  z 8 ti on). 

An understanding o f  the  curve-f i t t ing so lu t ion  to follow w i l l  
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The assumptions i n  t h i s  var ia t iona l  solut ion a r e  qui te  s imi la r  t o  the 

For var ie ty ,  l e t  us  choose a a l igh t ly  more general c la s s i ca l  assumptions. 

form for the assumed x(k). 

1. 

2. 

So 

Assume x(k)  t o  be of t h e  form 

x(k) = a f&k) + b f2(k) 

where estimate8 of a and b a r e  desired. 

Assume the disturbance t o  be s t a t i e t i c a l  i n  nature with a mean 

aquare value of 

disturbance a r e  assumed the  same throughout the experiment, 

Assume t h a t  the c r i t e r i o n  f o r  the bes t  estimate is the minimization 

of the  mean square e r r o r  o f t h e  estimated parameters, 

ence e x i s t s  between this assumption and the  equivalent c l a s s i c a l  one, 

The c l a s s i c a l  c r i t e r i a n  minimizes the mean square d i f fe rence  between 

the da t a  arid t h e  estimate over the i n t e r v a l ,  The ca lcu lus  of va r i a t ions  

c r i t e r i o n  used here minimizes t h e  mean square d i f fe rence  between the 

estimate and the  co r rec t  anmer over an en~sinble. 

t hese  two c r i t e r i a  a r e  equivalent only i f  the noise samples a re  inde- 

pendent, 

2 
n 

and 811 average of zero. The s t a t i s t i c s  of the 

A subt le  d i f f e r -  

AB w i l l  be seen, 

I n  this problem, since the  form of  x(k) is l i n e a r  i n  a and b, 

the  weighting h c t i o n  representation i s  v a l i d  -- i.8.. t he  system is 

finear -- and hencer 
a* 

a 

The expressions f o r  mean square parameter e r r o r  for independent noise  

samples are 
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If t he  noise samples are not  independent, the expressions are 

more oomplioated. (See equations 8 and 9) 

We des i r e  t h a t  in the  presenoe of no dieturbance. the wa w i l l  4, 

y ie ld  a and the wb , b. Thu8 

These equations express 

not necessar i ly  re la ted3  

W oons t r a in t s  3. f p d  
fp 
fp 
f+) 

IV cons t r a in t s  

mathematically the  cons t r a in t  that a noise- 

free system y ie ld  the  cor rec t  answeram 
2 

The problem t o  be solved is: 1, What i s  ma(k) such that Ga 5s  
2 

minimized under t h e  PD, cons t ra in te f  2. What is Wb(k) such t h a t  6 5 s  

minimized under thewb oonstrainte? 

Solut ion for Tia t 

and solve for, necessary X'S. The minimization procedure: subs t i t u t e  

Va(k) + E Q (k) f o r  W (k), d i f f e r e n t i a t e  wi th  respec t  ko & at 

and make the  r e s u l t  zero independent of 

& = 0 a 

z 
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The ref ore 
Wa(k) = [ 1- fl(k) (18) 

2G: n 
aro evaluated by subs t i tu t ing  equation 18 i n t o  thew, cons t ra in ts  i n  The 

equation 15. The form of wa(k) is again similar t o  t he  assumed form of x(k) 

and is e a s i l y  shown t o  be t he  same weighting function derivable by t he  classi- 

c a l  technique. 

scripts. 

The solut ion for Vlb(k)is e x a c t l y t h e  same except for sub- 

It  i s  not  surpr is ing t h a t  t he  calculus of v a r i a t i m s  technique y i e l d s  

the same answer as t h e  standard calculus technique under the same assuqtions.  

It should. 

dent problem, however. 

The va r i a t iona l  technique shows t h e  approach t o  t h e  non-indepen- - 
Ins t e id  of the  o r ro r  expression 
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7 Use of the bn 

which produces tho smallest mean square error. 

solution y ie lds  an answer derivable f rom 6 

oxproosion in the o p t i m i z a t i o n  process w i l l  y ie ld a lTb(k) 

Inasmuch as the c l a s s i c a l  
2 -z 

and not bn n ,it can not 

result in the bes t  lib(k’for - non-independent noise samples. 

also be dnmonstraCed using more elegant s t a t i s t i c a l  nrgumcnts. 

This f a &  may 

‘It thus 

hecones obligatory t o  use t h e  calculus of variations tochnique i n  solving 

tho continuous x(t)  problem where the indopondcnco assumption is  not  

ronlistic. 

Problem 7: Vhot are tho values of A, and 2, ‘in tho dcrivo? o x ~ r c s s i o n  
f o r  Tia(k) in equation 18? 

Problem 0:  Vihnt average error and mean square error should bo oxpcctcd in 
f indine b where x(k) i s  assumed of the form x(k) a + h k and 
whcro t e noise consists of independent saryles of m a n  squnrc: 
value G 9 

m d  average value zero? n 
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Y. FOURIER AND LAPLACE TRANSFORNS - &_I 

The two-sided Fourier transform is a useful  t o o l  i n  oer ta in  sections Of 

optimization theory. This transform is c lose ly  re la ted  to,  and more restrio- 

t i v b  than, t he  more fami l ia r  one-sided Laplnce transform+ defined by 
- m  

-st 
F(s) = J- f ( t )  e dt 

+jF+ 0 
0 

where f(t) is the  time function t o  be transformed, s is the so-called can- 

plex frequency, and c is a real number (of ten  zero) used to guarantee 

i n t e g r a l  convergence. Using t h e  substitution s = jw i n  t h e  conventional 

def in i t i ons  of the two-sided Fourier transform shows its s i m i l a r i t y t o  the 

Laplace t r a n s f  om. 

-3- 
The absenoe of t h e  oonvergenoe number, c r e s t r i c t s  the Fourier transform for 

our purposes t o  funct ions which s a t i s e  

*Gardner & Barnes, "Transients i n  Linear Systems." 
one-sided b'ecause only the posi t ive time region is considered. 
transform considers behavior i n  both pos i t i ve  and mgat ive  time. 

The transform is called 
A two-sided 



-jL, 2 

0 

d t  

k t l  
Thus f w o t i a n s  suoh as e 

viding the restrict ions are met on f(t), however, tables  of Fotlrier trans- 

forms are easily created fromtablcs  of Laplace transforms. 

defining intolYa1s. if 21{s) is t h c  one-sided Laplkce transform of f(t) 

from t = 0 t o  t = + 

f(t) going f r o m  t = 0 to t = - W , then 

and cos@* have no Fourier transform. Pro- 

From the 

and if F2(s) i s  t he  one-sitlod Laplace transform of 

0 ti- 

Tim Functions 

-dl tl -4 tf 
Problem 9: Find the two-sided Fourier t ransform o f  e and e  COS^^ - .  

N 

Problem 10: Prove that  & (s) = F1(s) + Fz(-~) as stated in the  t ex t .  - 
The res tr i c t ion  on the Fourier transform provides an interest ing  and 



- 31 - 
usoful  mons of dettrrndning whether f ( t )  occurred i n  +t or  -t. 

maticn js highly inportant i n  d i s c u o s i ~ g  the r e a l i z a b i l i t y  of networks. 

exar;~;?lo: given 

This infor- 

For 

1 
%SI = __I_- d.0 

& - a  
it m i ~ h t  appear that two alternatives are possible. 

u c t  
1- f.W 0 for t e o ,  e for t > 0 

I 
-4 It1 

2. f Z ( t )  e for t < 0,  0 for t > 0 

A- 
I - /  

0 
Time 

Figure 8 

Alternative Time Functions 

Only the sccor,d eltsrnativc s e t i s f i e s  the condi t ion for existence of the 

F o u r i e r  transf  o m .  For ,!IC! f i r s t  alternative 

an8 henco the Fourier transform does not exist. 

concept t o  show that  

Ve might generalize t h i s  

x-transforms of the type 
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qescribe time f u n c t i o n s  in j o s i t i v -  time ocly ax~d t h a t  ~ - t r ~ c s f n r - n s  af th.! 

d c  r;c r ibe no ga t j ve - t irn- f1 I nc t  i 3r, Y. 

- 1  -<..- 

I s  s a t i s f i e d ,  t h e  Pmr ie r  transfom. i s  :.aid to be f a c t 2 r n b l e :  t h e  fc lcforablc 

t r a n s f o r m  can b.r written as 

(-9) can .be w r i t t e n  by s u b s t i t u t i n g  ( - s )  evnryxhere f>r(($s) i n  (s).. 

A s  w i l l  b:? seexi i n  l v t + r  s e c t i ? r i s ,  t h e  :;i?ner o g t i m u r r  soiution .Ie,en~ls u:cxi bin(: 

able t o  factor a Fourier t r u n s f w n  into its t-.o berts BY . 3 e f i n s j  in cjku9ticm 25. 

The f a c t o r i z a t i o n  t h e e r e m  also hss a p r a c t i c a l  s i g i f i c a n c e  w i t h  r.-sir'.:t ti, rna l i zab le  

netvjorks. 

and consequen t ly  will have a transform H ( s )  in p s i t i v e  s only. 

of the n e t w o r k  is I l l ( s ) /  

s t a t e s  t h a t  no realizable netw,-l:-k can have i n f i n i t e  a t t r n u c t i x .  L H ( Y ~ )  - 3 i  

R e a l i z a b l e  networks have an i m p l s i v -  r e s s n s e  h ( t )  of z e m  fcr t L  0 

Th* 8 n l i J i t l i - k  x-q,on.se 

2 a n t  its a t t e n u a t i o n  log(H(s!/  . The cTit.eriorA ? h b s  

c 



over any f i n i t c  frequcncy band. 

Fxanple: Factor the  ( $ 8 )  for  f(t) = e 
J -d{ t I 

which f a c t o r s  i n t o  

-d I t l  
Froblcm 11: Factor the  x(S> for f(t) = e cos p t - 

Both the  Laplace and t h e  Four ier  t.ransforms arc nathcmatical a i d s  t o  
1 ,  

simplif'y the so lu t ion  of time-invari a n t  systems, Such transforms are ,rela- 

t i v e l y  worthless, howevcr, i n  t r e a t i n g  systems which vary with t i m e , *  A 

complete treatment o f  thc o p t i m i z a t i o n  of l i n e a r  systems ce r t a in ly  should 

include the time-variant case, Rather than develoy? an a l l - inc lus ive  body 

of mathematics capable of solving both the  v a r i a n t  and non-variant cases, 

however, vre shall d e v e l o p  the  non-variant so lu t ion  only. There are good 

masons for t h i s  apprcach. The only r e a l  d i f fe rence  between t h e  a l l - inc lus ive  

theory and the  time-variant theory is t h e  l eve l  of mathematical labor. The 

basic  so lu t ions  f o r  optimum systems are  i d e n t i c a l  i n  form. I t  is possible 

t o  car ry  the  invar ian t  case through thc d s s i g n  stage,  however, while the 
-- __ -I- -- 

* Typical systems a re  thosc i n  which th- values of R's, L's ,  and C ' s  vary 
~ t h  time. 
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variant  case I s  blocked by a formidable Integral  equation which, i n  general, 

Inmsmch 813 aerobywnicfrta and guidance engineers are often faced 

w i t h  time-variant aydtem, 8 r s p l d  develoymant should occur of the necereory 

mathensatlcal aids t o  reduce the labor of t h - v a r i a n t  eystern design. h 

reference of value' is  "hanshrma for Linear The-Varying Syetcms. by John 

A. Aseltine,  a thesis submitted a t  U.C.L.A., Department of Engineerin& in 

Februa.ry 199, 

types of transforms than Laplace and Fourier, 

Tbe t hee i s  Is primarily a discussion of the use of other 

Bessel and Cauchy transforms 

are discussed in d e t a i l ;  methods of reducing var iant  systems t o  Invariant 

systems by subs t i t u t ion  are mentioned. 

Problem 12: To show how time-variant equations may occasionally be reduced 
t o  invariant  equations, reduce the following equat i  n to a 
constant coef f ic ien t  equation by subs t i t u t ing  u e 0 

e 

a u 2 &  + b u a  + e x  -g(u) 
2 du du 

In this equation x is t h e  dependent var iable;  u is t h e  inde- 
pendent variable; a, b, and c are constants;  and g(u) i n  a 
dr iv ing  function. 



Elcc t r i cn l  onSinoors h a ~ :  long bcm f a n i l i a r  v d t h  t he  use of t r a n s f e r  

fiuictions f o r  descr ip t ion  of mtwork performance. 

systam tho t r ans fe r  funct ion ro l a t c s  t h e  output of t h e  network t o  its in -  

put  by moans of anpropriate Fourier or Laplace transforms. 

‘In a l i n c a r  i nva r i an t  

If F(s) ropro- 

sonts t he  transform of t h e  input, N ( s )  r cp rcs sn t s  t h e  t r a n s f e r  function, 

and C(s) reprc-scnts. t he  transform cf tho output, than  

C(s) = H ( s )  F ( s )  

This zamc rolat ionship m y  bc wri t t en  i n  t h e  time domain* using the supcr- 

poa i ti on i n t c  era1 . 

where g, h, and f are  t h e  Laplace transform of G, H, and F, respect ively,  

Thc relationships arc s imi l a r  using two-sided Fourier transforms: 

* Gardner and Barnos pages 228-236, 3ccomcnded reading, 
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Proof; 

The t ime domain representation is more fundomntal than a repreaontntion in  

t he  complex frequency donain. Tina-variznt l inear system, for cxaxple, are 

described by making the function h time-variable. 

The superposition integral  i s  also useful as the  c learest  way of v i sua l i z ing  

the cross-correlation operation cssd i n  detection of signals of known form. 

If the  integral i s  re-written as a sum of d iscrete  sampling operations, the 

result ing equation is recognizable as a weighting func'Aon equation similar 

to thosc given in t he  section on c'x-ve f i t t i n g .  



x 
c5q h(1:) f(lC - k) 

k = l  
/__I 

d(K) = 

b - - Ylb(k) x(k) (cquntion 10, sec t ion  fV C) 

k = l  

Tlic physical significuiice of the superposition i n t a g r a l  may be v i s u a l i z e d  

is several ways. If tlic i n p u t  mvc  is p l o t t e d  on a t i m c  scale as it ar r ives ,  

d o m  the  record z i t  the  sailte rate. The output is the intcgrntFd product of 

c?te trio ! ) i D t s  a t  each i n s t a n t ,  

ti= p r eb e nt 

I 
I- 

i n  s t a n t  

/@\  

o u t p a t  g( t) /- .\ --\ .- _--- m, .-. 
_._ ----- +- e 

time 
F'IGUHE 9 

Graphical Ficture of Supe rpas i t i  on I n t e g r a t i o n  

Froin the  superposit ion i n t e g r a l  it is evident t h a t  h ( t )  is the rcsponsc cf 

t.he iietbvvork to an impulse. Thus t he  s u p ~ r f . o s i t . j  on i n t e g r s l  mic l i t  also be 

v i s u a l i z e d  as the(presont) sum of res;'onses to ths(1)ast)  impulses definir .g f ( t ) .  
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1 t 
TIKE picsent 

i n s t a n t  

FIGURE 10 
Graphical Picturo of S u p r p o s i t i o n  Integration 

These v i s u a l i z a t i o n s  i l l u a t r n t c  t h c  fcct tht t h e ’  nctwork h ( T  ) detsrini nes 

the present relxtive i n p o r t a c c  of t h =  i n p t  s ignal  Z seconds befwc.  I n  

t h i s  sciisc, h( r ) i s  a weizhtad  ncniory .  

The frc;cilom w i t h  which we m y  choose h( Z ) is l i n i i t c d  i n  c . . r tn in  

cases. I n  a phjrsically-rcalizahle system, i t  is j R;?os:ii b l r  for t h n  system 

to hero a ~ . e m o r y  Tor cvcnts -i&,ich have nc;t y c t  ha;>;.cncd. 

p hy s i c a 1 l y  - res 1 i za b 1 e networks : 

Thus, for 

T h i s  r u s t r i c t i o n  is not always a;r)licable, I n  da ta  rediiction work, a l l  

d a m  with res?e-+, t o  the  i-itcrval gf intc;rc.,t iz availali le,  b o t h  past  

and fcture, ‘r!ei,htin;; fiuictiojla urtondin;;  i n  both 2 i r e c t i o n s  i n  time 

ure t he re fa re  adnh s s ib l a .  



0 T 

Problwn 15: Sketch the aci ghtin,; f u n c t i o n s  for the  f ollovrimg: 
-_.--I- 

3. An intcgrator 
bo A pure tim--d313y 
c. ~n im;)crfect i n t e g r a t o r  ~ ( s )  = l/(d + s) 
d.  A d i r f ~ r s n t i a t a r  
e-  ~ui e x t r c r d y  iiurPotv-3uni f i l t e r  band-centsrcd a t  foe 

Prob1ol.n 16: Dcinnns? r:&e wh;r t h c  i n t cg rG1  equa t ion  below cannot be Laplace 
t r a n s f o r m 3  w-lcsr; f(t< 0) --- 

= 0. 
+r*J 

0 

Su;,,c3Cic'q: Trx- it, usicb  t h z  samc? stc?,s 2 s  given in the 
k - ' . , r m s ? o r n  p roof  of cqi:;?tion 27, Keep close 

t r t c k  of t h e  l i m i t s .  

Yctr:: This particular intzgral cquxtion w i l l  appear 
i a t o r  i n  s c c t i o n  X I 1  E with thc  conditions 
;1> t h e t  f ( t c ' 0 )  # 0 and ( 2 )  the equation 
holds f o r  t> 0 only. The s o l u t i o n  of such m 
integral c q x t i o n  i s  fairly tricky. 
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The conccpt of indep~~nrlent phononsnn is a u s i l y  dcscribcd and i u d c r s t u d  

THO d i f f c r o n t  randoa 1101sc gonorators arc undoubtcdly indopttiidenk. 

s t a t i c  i n  radio roception is probably independent of tho broadcast 3 i J l n l .  

The 

Related phcnorrlcna (ire also cos i ly  conceived, a1thoul;h thc p r t i c u l s r  

way i n  which relatedness is mrsurcd micht 3ccm arh l t rury ,  

of rclatcdnsss is ohoscn t o  bc t h e  cor ra la t ion  f'unct;on. 

f'unction of timo and g(t)  mother fuictioii  of tine. 

c o q r r 2 d  i n  experiment after oxperimsnt, always at; a t i m e  to after thc: 

exporiincn-t; s t a r t s ,  we define thc  cor re la t ion  funct ion (p 

recult of averaging f(rJ g(to) o x r  iilrtiiy exprirnontc. 

Tbo w n s i w e  

Lot f ( t )  bc one 

If t.!irs.-! fmc t ims  arc! 

(to) to h n  thz 
f l: -- - 

Eie bar silnifics the  avcrai;a ovw !.IXI~ ex2mimnts .  If f(t) aiid ~ ( t )  

repcat  thcmsclves i den t i ca l ly  i n  each experiment, t he  i i v ( : n g i n &  p r o ~ c s . 3  

is unnecessary. On the otlicr hand, i f  f ( t )  tu12 g(t) arc ; t z t i S t i C i i l  i n  

nnturc from expcriimnt t o  e x p d n c u t ,  the  rrvcraLing process is of  p i n u  

iq) ortan cc . 
The m n  j o r  rccson f o r  maswing relatcdncsz by the corr~ l ln t io i i  fiuiction 

is that %he cor rc la t ion  function (or  i t s  Fourics t r u n s f ' o r x )  i s  t!ic w -  :nn4 

only necessary f m c t i o n  i n  dcrivirig the optimum system. 

Instead o f  comparing f( t)  sild i;(t) b o t 3  at to, a40 might coi:;isr.> f ( t )  

a t  to + 2 with g ( t )  at t,. The corrc la t ion  function then hucorws 

*The order of subscr ip t s  follows Wiener's convention. Pkilliys in hh.1.T. 
Lab. 25 uses reverse order, gf. 
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This p a r t i c u l a r  cor re la t ion  function is ca l l ed  t h e  cross-corrclntion - 
function of f on g . 
of f(t, +r)  with f(t,). 

---- 

Another comparison vm might imke is a comparison 

The r e su l t  is tho auto-correlntion function of f- 

The co r re l a t ion  botween a function and i ts  value 7 seconds away might well 

be expoctod t o  play an important part  i n  system design. Systems have been 

inentioncd as h-ving weizhted meimri (3s. A s i p n l  auto-correlation f'unction 

decreasing slowly with ind ica tes  a slowly oclr:Jing s igna l .  Such s i p n l s  

aro more e a s i l y  cxtractcd from noise than t h o s e  with auto-correlation 

funct ions decreasing r ap id ly  w i t h  tine.* The corro la t ion  function measures 

the degree of re la tedness ,  The auto-correlat ion function measures t h e  amount 

t h a t  a signal h%gs toge ther  i n  t i m e  and hence s p e c i f i e s  how mich of  its pabL 

h i  s t o r y  i s  worth remcmbering. 

The behavior of most s t a t i s t i c a l  phenomena is such t h a t  t h e  averaged 

performance is t h e  same regardless  of t he  pa r t i cu la r  instant t chosen for 

tho  observation, 

s t a t iona ry  time series. Notice t h a t  it is t he  overage performance t h a t  

0 

The behavior i n  t i3 of such phenomena are ca l led  

--- 
is s ta t ionary .  In  s t a t iona ry  time se r i e s ,  the  co r re l a t ion  funct ions do 

no t  depend upon to. 

'Pff(*C) = f ( t  + Z) f(t) 
- 

* Noise i s  usua l ly  characterized by autc-correlation h c t i  ons decreasing 
rnpid ly  with 7 . The most d i f f i c u l t  s igna l s  t o  e x t r a c t  f r o m  n o i s e  a r e  
those  i n  which t h e  s i g n a l  auto-correlat ion c lose ly  r e sc i~~b les  the  noise  
auto-correlation. 



Stationary timc se r i e s  are cndowcd with another propcrty by hypothosjs. 

The hE)othosis s t a tos  t h a t  it nakea no  differcnce ~rhc thcr  thc averaj;c is 

car r ied  out a t  to f o r  inany oxporimnts,  or whother t h o  averago is carr ied 

out.by using observations at di f forcnt  timcs in a singlo experiincnt. Tho 

ergodic hypothesis can not be proved, it can only be j u s t i f i e d  by cxyeriIneni;al 

results.. Some j u s t i f i c a t i o n  f o r  t h e  hypothesis might be found, however, by 

masoning tbxit because the t i m  s e r i e s  is always prcse:it (we just a ren ' t  

-_ - - - --A - 

watchins it) and because t h e  t i m e  of s t a r t  of tho experiment is arb i t ra ry ,  

any observed vsluo might riel1 have occurred at thc chosen t 

ergodic hypothesis and tho  in t eg ra l  de f in i t i on  o f  t i m e  average: 

Using the 
0. 

+T 

l i m i t  1 

T-- 2 T  'p ( Z )  = 
f E 

I n  this devclopcnt  o f  optimization theory, 

bo used primarily os a t o o l  i n  derivations,  

-T 
(33 1 

thc correlat ion f u n c t i o u  i ; i l l  

Wicner has shown t h a t  the 

Fouricr transform of t h e  cor re la t ion  funct ion is t he  spuc t r a l  densi ty  -- 
a somewhat eas i e r  s t a r t i n g  point f o r  t h e  design engineer's inngination, 

The spec t ra l  density describes t h o  power d i s t r ibu t ion  of the function in  

the frequency domain. It is eas ie r  f o r  the enginecr t o  describe hum 

interference by remarking on the amount of 60 cycle power present than by 

s t a t i n g  t h a t  the cor re la t ion  function exh ib i t s  a marked per iodic i ty  every 

1/60 t h  of  a sacond. 

Problem 17: Find t h e  auto-corrclntion function of f(t) = a s in(  $ t + C ) 



There are two problems In which the correlation function i tself  i 8  

particularly useful.  

correlated with the signals.  

by comparison of the incoming signal and noise with a locally generated 

signal. 

syatems. 

they are capable of out performing conventional filter systems. 

The firet problem is  the one posed by disturbance# 

The second 1, the problem of signal detect ion 

The l a t t e r  problem l a  encountered In crose-correlation detect ion 

When such eystema can be used (detection of a aine.wave In noise). 

%e 

correlation function8 are alao used ir: reducing t h e  labor required In 

empirical determination of apectral denmities. For assistance In the80 

problem, 80m of the propertles of correlation functions are: 

' L  
2. 'f (01 = CT = mean quare value or i ( t )  

ff 

Problem 18: Using t h e  d e f i n i n g  Integral (equation 33). demonstrate the 
f i v e  properties listed above, To demoimtrate the f iret property 
consider th5 function f(t) + f ( t  i%) and its auto- 
correlation function properties, 
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Tho s3ec t rn l  d m s i t y  is tho basic d 3 s i ~ 1 1  t o o l  i n  t h c  optimization of 

t i r e - inva r i an t  l i n e a r  systcms, The o p r z t i o n s  of dckcnpi:-i??G t h c  optiiiiin 

1ir.l: bct;.csc s t2 t iona -y  tin3 scries, system t r a n s f e r  functions, ;:rid t he  X L ; ~  

s $.lL.* b i  -. I., ,- ry S ~ Z C ,  tho dcsi,n of' t ine-var iant  systcms is I m t h  t l i f  rjc11lt rrn.4 

Tlic s - c s t r a l  densi ty ,  $(&I ), or" a f i i cc t ion  f( t)  i s  t i ,  fjric? nr; +.hc 
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cnougb sn t h a t  t h e  poxer d e m i t y  does not change apprrciably within the 

bandwidth. Inasmuch ea tba  filttr scans 2 frequencies a t  the s a w  time 

the s p c t r a l  density at either a positive frqueney or its corresponding 

nsgutive frequ-ncy I s  given by one-half the yower output of the filtir 

divided by t h e  f i l t L r  bmndwidth. Figure 11 shows n t yp ica l  l i ener  8l’c:ctral 

densi ty  and the act ion of a narrow band scanning f i l ter .  

Suprimposed ’ f i l t e r  cha rac t e r i s t i c  

N e  rrow-band scam in43 
f i l t e r  

centered a t  z u o  
bandwidth B. 

Reading of 
Power ind ica tor  % B ‘i-5 two> 

i 

FIGURE 11 

-----_ . t 

Vienar Sp”ctra1 Density and Action of Scanning F i l te r  

If the  density is Integrated over a l l  frequencies, t h e n  by def in i t i on  the 
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B. Propert ies  -- 
Perhaps Vlienor ' 8  grea tes t  contribution tvas t h e  rigorous demonstration 

t h a t ,  for s t a t iona ry  t i m e  ser ies ,  tho spec t ra l  density and thc correlation 

funct ion are x - t r a n s f o r m s  of each other. This s ingle  contribution changed 

the spectral densi ty  fromthe  l eve l  of empirical graphs t o  t h o  level of ann- 

l y t i c a l  mathematics. Properties .of Fourier  transforms becone propert ios  of 

t h e  spec t r a l  density, Referring t o  t h e  sect ions on Fourier  transforms and 

cor re la t ion  functions we can mite: 
t- 

-5" 

Another concept is almost immcdiotcly introduced which might othenvi sc be 

missed i n t u i t i v e l y :  t h e  so-called cross-spectral  depsity, a power densit;S. 

present  due t o  re la tedness  betvreen 4x0 t i m e  functions. 
Qo 

- s r  z f g (s) = pfp e d T  

-9) 

Based on thc proper t ies  of the correlat ion function, we can now rrrite a few 

proper t ies  of the spec t ra l  density:: 
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Problem 12: Demonstrate the above properties, 

Using the notation FT(s) tor the finite-time xtransform of f(t) and 

GT(s) for  the equivalent in g(t) 

Those equations must be used wi th  extreme caution. The cross-s>eclrel d e n s i t y  

*w convention, t h e  order of subscripts gf d e f i n e s  t h e  F(-s)G(ss) transform 
combinstion. Th2 order, fg, would refer to F(SS)G(-S) .  



equation is par t i cu la r ly  treacherous. The f i n i t e - t i m  transforms given here 

must all be taken w i t h  respect t o  the same t i m e  reference. With proper cau- 

t ion,  however, it l s  possible to  derive the  following propertiea of r p c t r a  

passed through 8yste1lldl. 

junction 

( W )  i 
h a o r a l l y  spak ing ,  the mount of cross-correlat ion is smal l  between die- 

turbances er between disturbances and signals.  If the various time functions 

are independent of each other, the cross-spectral  d e n s i t i e s  are Ident ica l ly  

zero. The converse is not necessar i ly  true. 

Problem 20: What is the output spec t ra l  density of a realizable network whose 
function is exp(- d% ) t o  a s ta t ionary  t irw s e r i e s  of euto- 
cor re l a t ion  furction exp( - t /%/ )  . cos 3 
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Problsm 21: Find the output spectrum of t h e  system given bclow by first 
combining the  t ransfer  functions. Compare w i t h  equation (41). 

0 

thc system sivcn below. Coniparo 
with htii cquction 41 and equation 40 (addition a t  innut), 

0 

Ar;>lyjnG the i-icnsr-Palcy c r i t e r ion  
3.r, 

' t o  a Given spec t ra l  c3cnsity dctcrr . ines  its. f t ic torabi l i ty ,  i r e , ,  whcthor it 

:72,vor has shown t h a t  when the  c r i t e r ion  docs not  hold, tho zt.at9ioiim-y t i  71; 

.,t I i a 2 s  tlnit:r cons1 dcration is completely predictable ,  

d p n s i t i c s  are x ( s )  = e and  e , w i t 1 1  corrc lut i  on f r ix t - . i  PI' 

t.hc fnrm A 0  

TTJO such s jwc t ra l  

- Is1 2 
S 

and n/i 1 +r 2, resFcctively,  
-te 9 

polynmi  in 
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Such spectral dcns i ty  forms are factorable  i n t o  

ivhcrc v(S) contains  poles and zeros i n  tho lsft half-plane only, and$(->) 

contains t h c i r  mirror i m p s  i n  t h e  r i g h t  hand plane. 

The corre la t ion  funct ions corresponding to these spectral densi t ies  

arc sums of exponential tim functions with complex cxponcnts. 

l i a r  relationships of Fourier transforms t o  each othcr  hold as w e l l  hi?- ' 

twcen a functirn's spectral dens i ty  and its corrc la t ion  function, TIM 

corre la t ion  behavior nqar -c=O 

Trans fo rms  occur in "pairs," i.c., except for th? crwsi.:ittl *:a' , 1 r - , t ; s f ~ - ~ - m -  

ing from t h c  Z d o m i n  t o  the (ridomin is t h e  saiie as traiisfui-i~!ing frmi the 

The fami- 

descr ibes  spectral hchavj or as S t Qo 

id domin to t h e  (- T) domin. For example: 
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C. Comparison with tho Fourier "power spectrum" 
I------ 

The de f in i t i on  of spectral  densi ty  sounds much liko tho dof in i t ion  of 

"power"-present i n  a Fourier  transform. 

f(t) has thc  t ransformF(s)  what is tho re la t ionship  of lF(s;)l 

The question is oftcn asked, if 
2 
to the 

spec t r a l  densi ty? The answer t o  the question as s t a t c d  is: none. From 

equation 39: 

= o  

density, Such funct ions a l so  have zero mean square valuc, To he trans- 

fornnble f(t) obeys 

J 
-b = A  

thus  

As w i l l  be seen in the next section, t h e  Fourier power spcctrum can bc iised 

t o  p n c r a t e  a spcc t ra l  density by introducing randomess. Tho n n r m l  Foiirif I 

transform, hotvever, is evidently not the mcsns by which tfic IW-ULT ; ~ I I L I - C \  va11t~. 

of a hulct ion is determined, 



f u c t i m s  ar?  known, the o2tirum syst.3m m y  ba s l , ' ( : i i f i -d  by a f:w algebraic. 

of i n p u t  siectrtil d c n s l t i s s . .  The nbatroction, * f l a t  noise.,' is of t in  us5fd  

in t h i s  cmnnction. 

is a constant. 

The correlation function of such a sk?ctr.al 3eri5ity is . . ( : ), a delta fr.cctlon 

Fla t  noisr requires infinite crverhg- power. A3 7;j:l 3t seen, howevzr, th? ab- 

s t r ac t ion  is of ten useful .  
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= 2RKT 

where R = res i s tance  in ohma 

k = Boltzman's coristant 

T = absolute t e m p r a t w e  in degrees Kelvin 

The second use i n  f o r  mathematical conventence only. Ple usual ly  know 

the approximate signal bandwidths. T h e  bandwidth of ~ R Y  c i r c u i t  we might de- 

aSgn ce r t a in ly  w i l l  not exceed the s ignal  bandwidths by much more than an order 

of magnitude, Thus If the noise I s  f l a t  o u t  t o  a t  l e a s t  10 signal bandwidths 

its behavior outs ide such l t m i t s  w i l l  not be important in specifying the  optl- 

mum c i r c u i t ,  

centered a t  zero frequency, and tha t  the noise spec t r a l  densi ty  is given by 

For example, suppose t h a t  the eigne18 have a bandwidth (J, 

speaking, the r e su l t i ng  optimum system w i l l  not  be af fce ted  noticably by ig- 

noring the ~ u ~ ~ o u ~ 2  term. For t h i s  reason, f ls t  noise is often used aa a 

first approximation i n  the description D f  wide-bandwidth disturbances. 

The t h i rd  use of f l a t  noise is often the most helpful.  We noticed t h a t  

Fourier t r ans fo rm of t i m e  functions -+.ere unsat isfactory i n  describing spec t r a l  

d e n s i t i e s  or mean square values, The behavior of systems t o  spec t r a l  densi- 

t i e s ,  however, suggests an in te res t ing  way of generating spec t r a l  dens i t i e s  

f o r  s igna l s  (and disturbances) whose approximate time cha rac t e r i s t i c s  are 

known, Assume a fair knowledge of f(t) aad hmco F ( s ) ,  From t r ans fe r  function 
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theory vie hiow t h a t  f(t) can bo produced by insorting a unit impulse i n t o  a 

oiroui t  of transfer function F(r.). 

unit impulse 

Let us substitute f l a t  noise for the  impulso. The output spectral density 

F l a t  noise  output 

The output t i m e  function of this system cons i s t s  of many f(t)*s of random 

amplitude and time of occurronco. 

cancel. 

The mult ip le  f ( t ) * s  w i l l  over lap,  add, and 

For exaqle ,  if f(t)  had been asslimed a s t o p  function, t h e  noise- 

driven c i r c u i t  would produce * 

or if f ( t )  = t, thc circuit would  produco 

- 
* Using the random lmpulse  modo1 f o r  f l a t  noiso  and assuming that the  

length of t he  experiment in time is not i n f i n i t e .  
it can be shovm that both f tmc t ions  above v r i l l  d r i f t  t o  o i t h c r  + or - QO.  

Given i n f i n i t e  time, 



The Laplace transforms of a s top function and a ramp h o t i o n  a r e  1/a 

The equivalent c i r c u i t s  F(s )  for t he  i l l u s t r a t i v e  
2 

and l/s , respectivoly, 

f(t) are therefore  an integrator  and (L double in t eg ra to r ,  

above thus represent integrated and doubly-integrated f l a t  noise. 

functions of time r e s u l t  i n  appropriate o i rcu i t s .  

The sketchee 

Other 

Occasionally c i r c u i t s  

a r e  required with i n f i n i t e  power capabi l i t ies .  

p roper t ies  of integrated f l a t  noise t o  d r i f t  t o  plus or minus i n f i n i t y ,  

Bocnuse of the  demonetrablq 

both the  in tegra tor  and double in tegra tor  f a l l  i n t o  this class. The issue 

may be side-stepped by s t a t i n g  :;mt there  i s  no such th ing  as a perfect  

in tegra tor  and t h a t  a l l  in tegra tors  should be represented by 1/s+a where 

is i s  some vory small n d e r .  If in doubt about the mathematical v a l i d i t y  

of  ce r t a in  operations involving such c i r c u i t s ,  de l ibe ra t e ly  degrade t he  

c i r c u i t  during the  optimization process, removing the degradation at the 

end of the  process i f  possible, 

Several important points  a r i s e  i n  this  l a s t  u s e  of f l a t  noise. The 

f i rs t  point  dea ls  with t h e  s- and t-sylmnetry of t h e  f i n a l  s p e c t r a l  density. 

Inasmuch as the spec t r a l  density is N2 F(s)F(-s), the generating t- 

funct ion may have been e i t h e r  f ( t )  o r  f(-t) ,  

example, t he  spec t r a l  densi ty  describes not only a random s e r i e s  of e-at 

b u t  e-a'-t'as well. In  addition, f l a t  noise cons i s t s  of o ther  t i m e  

h o t i o n 8  than a random Bet of impulses, as may r e a d i l y  ascertained by 

If f ( t )  were f o r  

viewing wide-band noise  on an oscilloscope, The preceoding sketches, there-  

fo re ,  desoribe possible  outputs only. 

The design engineer oompletes the  generation of s p e c t r a l  dens i t i e s  from 

approximatoly knovin f ( t ) * s  by specifying the  expected mean square value of 

the  f ( t )  and i t s  r epe t i t i on  period, 
2 

If the mean square value is gf 
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and the mean r epe t i t i on  r a t e A T f ,  then the spec t ra l  density for a ranaom 

oeries of f(t)'s Is given by 

Problem 22: A rocket is f i r e d  ve r t i ca l ly  i n t o  t h e  etmsyhare, Vind is an 
inporttint disturbance. 
ter ized by layers  of  random, constant-velocity r i n d s  and t h a t  
the rocket encounters new layers  a t  a roughly constant rate, 
derive a s p c t r a l  density fo r  t h e  wind velocity,  Assliming t h a t  
the rocket ha3 a t ransfer  frinction 1/Ts2 from Tfnd veloci ty  to 
missile position, what i s  the spec t r a l  densi ty  of rocket position? 

Assuming t h a t  t h e  atmosphere is charac- 

Problem 23: Derive the  spec t r a l  density of the v e r t i c a l  e c c e l e r a t i m  produced 
by bump i n  a road. 
ar2e-bx w h 4 r e  x is borizontal  distance,  Assume constant ve loc i ty  
t r a v e l  gown the bumpy rosd. 

Ths bump height y is givel; approximately by 

S p c i f i c a t i o n  of the  a p c t r a l  jensit jr  of distaibsnces should be mdz at 

t h e  origin bf the  disturbance. S p c i f i c a t i o n  of t h e  t racking noise of' a radar,  

for example, is most accuratekj  obtained by loca t ing  the  sourcya of t h e  noise 

within the t racking loop, s p c i f y i n g  the noise a p c t r a l  densi t iPs  e t  t h e  

source, and then using t h e  known t ransfer  cha rac t e r i s t i c s  of  t h e  t racking 

loop t o  s l s c i f y  t racking nciue, It is surpr i s ing  bow often a f l a t  noise 

assumption for t h e  source noise w i l l  yield a spec t ra l  densi ty  which checks 

empirically a t  the point of i n t e re s t  i n  a systtm. Tracing the source of the 

noise will occasionally demonstrate certain cross-sgcctral  dens i t i e s  as well, 
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X THE ERROR SPECTRfU DRlSIm 

Now we begin t o  hit pay d i r t ,  The dosired operation of tho system is 

known. The input spectral densit ies  are laiown. By writing an expression for 

the system error (actual 

t h i s  expression in to  i t s  

man siuare error of tho 

3. 

perfonnanoe minus desired perf orinance) converting 

spectral d e n s i t y  fom grro, ( e ) ,  we may specify the 

sy 8 tom, 

Given such an integral expression f o r  moan square error, we may ndnilnize it 

by any technique applicable. 

Consider the basic  system given i n  figure 3. 

Describing the output by a Laplace trnnsform equation: 

E(.> = H ( s )  F(s) -k li(s) N ( s )  

Assume t h a t  the desired operation i s  to obtain the bcst  f(t) possible.* 

Tho error of the system i s  thus 

E(.) = (4 - Fb) 
= b(s) .- 11 F(s) + H(s) N(s) 

The squared error i s  given by 
~~ ~- 

* Tho so-called s m o o t h i n g  operation. 



The Fourier Transforms F ( s )  and N(s) do n o t  actually exist for s ta t ionary  time 

series.  

method of finding the appropriate  spectral  densi t ies . .  Equation 49 could be 

just i f ied by considering F ( s )  and N(s) as f in i t e - t i no  transfornis. 

dens i ty  form of equation 49 may therefore be wrj t ten  

averages (see equation 39). 

The error-squared expression of equation 49 is used only as a shortout 

The spec t r a l  

by taking the  necessary t i n e  

If the  signal and noise are uncorrelated, b o t h z  and xfi &re zero. It is not - nf 
legi t imate  t o  find cross-spectral  densi t ies  by fac tor ing  t h e  a i p a l  and noise  

spec t r a l  dens i t i e s  into h c t i o n s  of +s and -s rrhich a r e  then conbined in to  

apparent cross-spectral  densi t' es. 

Independently of the form of the  auto-spectral dr;nsities. 

Cross-spectral dens i t i e s  must be j w t i f i e d  

Problem 24: 

Problem 25: 

Assume a system i n  which the s igna l  f( t > and noise n ( t )  a r r ive  at 
the  output by t w o  different  routes s m h  t h a t  H1(s) a c t s  on f ( t )  and 
R2(s) on n ( t ) .  
Assuming correlat ion between signal  and noise,  what is tho e r r o r  
spec t r a l  density2 

The desired system opera t ion  is H3(s) act ing on f(t). 

1 
What is tho e r ro r  spectral  density of a 8m o t h i q ;  system R ( s )  = -- 
to a s i g n u l  of spec t ra l  d e n s i t y  (a2 - s2)-' cad a f l a t  noise a 3 . n  
spec t ra l  dens i ty?  
nomials. 

Express the answer 8s the quotient of two poly- 
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XI PHILLIPS' OPTIh~lIZATION TECHNIQUE * 

Sf a complete ayotem is .at our disposal  it is worthwhile t o  deeign the 

optimum possible system. Often, however, the  system is completely specified 

by other considerations and only a few parameters a re  avai lable  which can bo 

var ied  to y ie ld  best r e su l t s ,  For example, the optimum system may require 

i s o l a t i o n  amplifiers i n  order to r ea l i ze  the  optimum trmsfer function, Addition 

of such amplifiers may so increase t h e  cos t  t h a t  in  a competitive market the 

r e s u l t  is economic loss, 

I n  the previous sect ions we have shown how t o  spocify the  e r r o r  spec t ra l  

densi ty  for a system and have remarked that spec t ra l  dens i t ies  usual ly  occur 

as quotients  of polyr~omiala, Ph i l l i p s  noted th i s  f a c t  and se t  about evalua- 

t i n g  the  in t eg ra l  below i n  terms of t h e  coef f ic ien ts  a and b, 
jtw 

whe re 
%(SI = 

The roots  of hn(s) must all l i e  i n  the  l e f t  half  plane, The fac tor iza t ion  

of the denominator puts the  in tegra l  i n t o  i t s  most useful  form. 

r a t o r  is no t  factored because such fac tor iza t ion ,  w h i l e  ce r t a in ly  possible, 

would e n t a i l  additional work for the user. The subscript  n gives t h e  order 

of complexity of t he  polpomials .  .Is an i l l u s t r a t i o n  l e t  

The nume- 

* From "Theory of Servomechanisms" V o l ,  2 5 ,  N I T  Radiation Laboratory Series 



2 &(s) = - (A + E) s + (A! + Bd2) 

and thus 

P h i l l i p s  has evaluated such integrals for values of n form 1 to 7. (The3r-y of 

Servomechanisms page 369). The first four integrals are 



n b  0 1  

2 2 2 
The expression for contains 21 terms. contains 47 torms and , ll;! .) 

Problcm 26: Vhat i s  t h e  mean square error given that 

2 volts  /cps 
p, = 1 0 2  + 

1 - s  -ET7 
The op t imiza t ion  problem in Phillips technique is 

3 

the  problem of mimimizing 
c. 

the d, w i t h  whatever variable parameters are available,  For example, let 

w h c r e 4  i s  variable then 

Ed - A 

2 4  

2 

2 8  
0' = - +  
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for a mini- 
d r 2  = o ax- 

and consoquently 

Problem 27: What is  the best RC t im constant in  the network below to mipi- 
mize tho mean square error when smoothing a s i p a l  
in the  prosonce of (independent)noise -=-a f+ g.-s 3 3, 

2.c 

1_ OUTPUT 
I 

c R INPUT 

This optimization technique followed - Piiencr 1s technique by roughly a 

year. even though, mathcmatically, this technique is far more l imited  in 
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A. Baaic Logic -- -_----- 
The Phillips technique minimizes the  m 9 m  square error of  a system in 

which a l imited number of parameters are adjustable,  

achieved v i a  the calculus of var ia t ions  route. 

Tho Viener  optimum 5 s  

Howover, the der iva t ion  of 

tho o p t i h ,  as  Y'lisnor presents  it i n  his "Stationary Tim Series," 58 80 

mathematical i n  Innpngc as t o  obscure tho simplicity of logic on which it 

is based. 'Indeed, t he  log ic  has already been presented. Except for a t r ick  

necessary t o  make t he  system real izable ,  and by considering an i n t eg ra l  without 

absolute value brackets, we optimized t h e  simple smoothing system i n  problem 

1 8, Combining our knowledge of e r r o r  spectral dens i t i e s  with t h a t  of the 

calculus of variat ions we may "a lmost"  f ind  Wiener's answer in three lines. 

.... 
8 

Smoothing 
Wetwork 

(Signal and Noise Independent.) 

FIGURE 12 
The Basic Wiener Smoothing Problem 

300 
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which is minimized* by t he  calculus of variations technique, yielding? 
....I 

Problem 28: Show that i f '  the desired operation ha6 been H1(8) instead of 
smoothing, tho abme H ( s )  would have been 

The H(s) which 'we have j u s t  determined is interesting but cannot be rea- 

l ized. As was shovm in t h e  section on spec t ra l  densi t ies :  

and consequmtly H ( s )  = €I(-s). The t r a n s f e r  function thus has terms such as 

the second of which is e i t h e r  unstable (e 

as was discussed i n  t h e  sect ion an Fourier 

- a w  a t )  or unrcalizable e 

t ransf  o m s  

Inasmuch os this obstacle takes o d y  a l i t t l e  t r i c k e r y t o  overaom, we 

have solved for the famous Viener optimum filter as far as basic concepts 

are ooncerned. 

3 

5 Trickery 
L. 

The purpose of the following trickery i s  t o  mako the var ia t ion  of $6 
The t r i cke ry  enables us t o  discard zero with an H ( s )  which is realizable. 

- 
*Problem la. 
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part of the  i n t e g r a l  r e su l t i ng  f r o m  the  calculus of var ia t ions  d i f fe ren t ia t ion .  

Se t t i ng  t h e  remainder of the integral equal to zero yields t h e  optinnun realiz- 

able  f i l ter .  

,The essence of the  maneuver is oontained i n  the values of two integrals.+ 

The constants 4 and are c o q l e x  numbers whose real p a r t  i s  positive. P 
Let  us define t w o  useful forms by a plus and minus subscr ip t  such t h a t  

A 

The 2+ ( 8 )  is defined as having poles in the l e f t -ha l f  plane only. z - ( s )  

has i ts  poles  i n  the r ight-half  plane only. 

another such p a i r  of functions,  the in tegra ls  I1 and I2 demonstrate t h a t  by 

pai r ing  terms i n  2 and Y, 

Then if Y+(s) and Y,(s) is 

* These values may be obtained most eas i ly  by contour integrat ion.  
a technique, is unfamiliar t o  the  reader, the values may be accepted on f a i th .  
It  is probably unprofi table  t o  study tho technique j u s t  for this developmont. 

If such 
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Equation 59 shows t h a t  integrals whose integrands have poles in one half- 

plane only have value zero. 
r. 

Those with mixed*poles have a non-zero value. 

Tie now proceed io t a m p e r  with the ;;;inirLzation carried out earl ier .*  

-JCS 

TO minimize t h i s  integral  WB replace H+ by H+ -k E q+ 
f u n o t i o n t ,  i s  subject to the same res tr i c t ion  as  q, namely that it be 

real izable  -, a l l  i t s  poles in the left-half plane. Performing the sub- 

s t i t u t i o n  and so t t ing  a /a  = 0 a t  & = 0 yields 

*Problem 1 a 

. The arbitrary 

2 
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(62: 

vlre can obtain a zero value, o f  course, by 

but t h i s  solution i s  unsatisfactory. The t r i ck  consists  of demonstrating 

that part of the right  hand side of the integral  equation i s  zero, regardless 

of %or the spectral densities.* . L e t  us fac to@m + zfd 

The section on Fourier transforms gives us jus t i f i ca t ion  f o r  this action. 

Then 

1 rn p+ 
-Jgo 

ds  

Gi3 
-J @ 

The f irst  parts of these integrals,  involving the integrals j + %  '- ds 
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a n d . m  H+ v! 's * c a n  n o t  be zero becauso they contain h t o r p i n d s  with 

mixed poles  (equation 59). The second par t s  of the intogrnla, however, d aon- 

into and - 9 3 
-% Y- taia both zero md non-zero parts. To show t h i s ,  s p l i t  

sums. of partial  fractions 

The zero parts o f t h e  in t eg ra l s  of equation 65 are thus 

si, 

because the integrands contain poles  i n  one half-plane only, Rowritirig equation 

65 without i t s  zero parts me obtain 
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The conditions for zero var ia t ion ,  independent of a r e  the re  fore 

These equations are exac t ly  a l ike  except f o r  a - +s interchange, By convention, 

(3ff/p)+is ca l led  the physically-realizable p a r t  of gff/ q! and is usual ly  

m i t t e n  as 

Tho optimum Yliener f i l t e r  is therefore given by 

( 6 3 )  

r e  o l i  zable 

H(s) = 1 

Y < s >  

Problem 29: Prove t h a t  i f  the desired operation had been H l ( s )  instead of 
smoothing, t he  optimum system would be 

- 
rea l izable  

Tho derivat ion has applied t o  a signal and noise which are uncorrelated. 

In t h i s  case of correlated s igna l  and noise the ansmr i s  

vrhoro 

H1(s) = desired minimum phase operation 
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Problem 30: 17hat are the optimum filters i n  tho cases listed below? 
Signal  and noise are uncorrelated. 

za 
N2 

152 

C. How t o  SDecifv a Viener O D t i m u m  Svstom 

1 

1 

The foregoing proof has demonstrated that the optimum TJiener system i s  

given by 

n,(s) (2,f + E,,, ) 
Physically (71) 

Reali zable 
y (4 

nf +iE +iE fn where w ( s )  (-s) = E,, +gm 
H1(s) = Desired System Operation (72) 

and where, if the brackets are expressible 

Bi 
Realizable Z 1 d i + a  Physically 

- - (74) 
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lvhoro t h e  A, art; dctorrdried h; r q  Ciko <jf zt nuinbcr of Lochniques. 

Bnrncs pu.6;" 1G4). 

(Gcrrlner 0 

If T is a p o s i t i v c  zvrn3t.r (fut.w*s Frwiiction),  the  use of 

i n  Chc 'dieref o p t i m !  Z(s)  oqucticn rill c o n t r i b u t e  l i t t l e  other 

= H 1( 8 1 

Ts of e t ipL~ccr  in tho left half-plane, If T is a 

1 

2 :  
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approximation n = 2 13 l isud,froin equation 'IG, 

The approximtion might a l s o  have boen used 
. 

- 

r e s u l t i n g  i n  s f i i l  d i f f e r e n t  pLeR. The best approximation probably 

depsnds upon the s i g m l  and noiec funct ions considered. 

2 ,  Misleading Operations 

The oporktio1i, "physi:.ally 1-ea l izablc ,"  has been dcfinod only for 

quotients of  poiynomials whose numerator  is of lessor order than the de- 

noininator, Opern t ions  H. i s )  which r e s u l t  i n  1 

n o t  having a hii;?xr order der.wninntor than numerator gci lsrdly produce 

nis leading resu l t s ,  Out: c;J?+;~ check b e f o r e  a t a r t i x g  +he problem xi11 

prevent such o:cur-Tt:::es. Check t h a t  i f  no noise were present, we - 
would not  be performing im operation y i e l d k g  in f i r i i t e  output signal  

values. As an sxaar,lc, ssking the d i f f e r e n t i a t i o n  of 
1 

would r e s u l t  i n  an output spcs+,nun 

2 -3 - - -- 
%*t 1 - sL 

whsse mean sqaare vaiuo i s  i r C i n i t e .  Stated an themt ica l ly ,  the 

function f ( t )  r e p r c s c n t e d  by such LI 9 i s  almost never di f fe ren t iab le ,  ff 
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Problem 31: a, Firid t?m opcra tor  which clppcars Yhon -- --- 

t. Lot Xi +O. Bra YE differentiating? 
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?Ic3R3 13 

A Tinc-varian; L3ightlrg Furxtion 

T\e error of the a p t m  t i t t h e  t is by 

w 

po in t  (and which we w i l l  arbi t rar5ly continuc t o  use)  i s  th t  * e  moan ie 

taken w i t h  respect t o  an en3einblo of  experiments, Tfic re:> squfzz  e r n r  

mi;;ht e l s o  have been defined as a t i i i ~ a  a v c r z p  durkg  OM ex?criment, 

l a t t e r  definition was >.sed i n  tho curve f i t t i n g  Froblom. 

The 

I f  the systems are 



- 75 - 

Definit ion One 

ZP 204 

Definit ion Two 
(Time Avorago) 

- 2 d M  2 
n (t)dt w- 2T- 

-T 
= o  

Using the  ensoiiible def in i t i on  leads to t he  assumption t h a t  tho menn square 

error of a systom is njnimizad i f  it is ensemble-minimized a t  every instant .  

Coming bnck to t he  derivation, t h s  mean square (ensemble) average of 

Defining soma ensemble correlat ion funct ions 
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ive r ev r i t e  t?ie man square error as 

EP 201 

The mean squaro error  i s  now minjmized by the  calculus  of va r i a t ions  approach, 

Let h($,t) be replaced by i.-('t:,t) + &I(%."), d i f f e r e n t i a t e  with respoct 

t o  E a t  E= 0, and make the  result independent of (%,t). The r e s u l t  is the 

equation 
fo0 

which holds ( o n l y )  fcr %> 0. T h j z  zquat ion  must now be solved for h(t8*),. 

No s o l u t i o n  has t e c n  y-oposed  for tf7c timc-variant case. For t h c  s ta t ionary  

xhich is t h o  samo as 



dcrivcd earlier. 

may be a t im-variant  opcrator if desired. A time-variant operator, H( 6,t). 

dl1 appear much l i k e  the usual constant-coefficient H ( a )  but \vi11 have % Q 8  

a paramt.er. 

From our cnsemtle def in i t ion  of man squaro error, B ~ ( E )  

Problam 32: Prove equation 85 in the manner outlined in the tex t .  
__I- 
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XI11 A PHYSICAL IlITXRPRETATIOI! OF TIIE XLDJER O P T I U  
---.-d--- 

Bode and Shannor* have given an instructive picture of tho signifioanoe 

of the operations used In obtaining Rimer’s  optimum system. 

vat.j.on i e  bas ica l ly  the 8am RS the ( : ; e  presented hero. 

Ianzuago are bath s l ight ly  diffcrcnt.  

vtrfto tho H ( s )  oquatlon in conclusion. 

Their deri- 

Their approach and 

Unfortunatoly, they negfbcted t o  

The engindor recognizes tho necessity of nalcing his system physically 

xeal i iable ,  He a l s c  agrees that 

n(s) = s ff 
iF - ff ’5, 
c_ (Example only) 

is a fine solution but imrenlizablc,  But why can% we write t he  solution 

as follows? 

T h  reason, mathenaiic.a’lfy, i s  t h c t  t he  optimization d e r i v a t i o n  docs not 

work this i v a y ,  

(sign71 plus  noise) possesses c o r r c i n t i o n ,  i . c O 3  som of the data in tho  

The F i ’ j s i cd  reason is this: the t o t a l  input fvmction 
c-- 

mderstands this  fact. 

prising. 

The future  infcjrination w i l l  not be t o t a l l y  sur- 

Thus, even thoagh our wGibhting funct ion can only use a ~ a i l a b l c  

data,  it can dc a ‘ t c t t c i  snoothing job by doing sone predicting, as well, 
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On the  other hand, suppose tho t o t a l  input spec t r a l  dsns i ty  i o  flat - 
(cor re la t ion  only a t  $= 0). 

these oonditions l e t  us derive a system v i t h  no holds barred. 

will be unrealizable aa alwsys. 

The fu tu r s  Is a oolrplete surprise. Undor 

The result 

But t he  unrealizable par t ,  tho p a r t  ueing 

fu tu re  data, is vrorMng with r;o_l_rrpJately unpredictable lnforrnation (oorre- 

l a t i o n  of futuro input  data  w i t h  pa3t input da ta  is zoro). Tho bcst guess 

a t  future  behavior of the input i s  t h a t  It v r i l l b o  zero. Because t he  future 

is unavailnblo, we t~5.X lose  l i t t l e  on tho average by assigning it a zero 

value. The "physically real izable"  operation thus c o s t s  119 the least  if 

performed on the t r a n s f e r  function of a notwork whose t o t a l  input  spec t r a l  

densi ty  is flst. Let us apply th i s ' r ea son ing  t o  the Rir .ncr  problem. 

1, 

2. 

Convert the  given input t o  flat noise. 

Optimize the system from this point with the  desired operation 

being y ' ( s ) .  

The operator is 1/ y(8)r 

FTGUIZE 14 

Physical Systsin for Ffnding 3iener Optimmm System 

The optimutn H ' ( s ) ,  no holds barred, is 
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as shown cc:-li,or. But this  n t a y  be w i t t o n  BB 

30 Taking tha  physically r e a l i x ~ b l e  p ~ r t  and conhining into uno 

t rari sf cr fimc t ion 

Problcm 33: Derive the optimum H ( s )  to perform an operation s,(S) using 
t h s  snmc rcnsoninz:, 

Sovcrnl conscqienczs af the Kioncr so1ut:on are ovidcnt, First ,  and 

probably most important;, ths best m y  af pcrforrnin; an operation 3 ( s )  is 

not t o  first smooth t h c  5 . q . u t  m d  thon operate with H (s), 

for o x z q l c ,  tha t  tlic best dcri;ra.civl: of a function is obtaincd by f i n d i n g  

It is not t rue ,  1 - 

tha bcs t  sriioothsd value and. thcn di f fc rcn t ia t inG it. The sccond conscquerce 

is mcra mathc~wticul  thml prc ctica3 :, Thc roqi i i rzd c o r r c l e t i o n s  arc not tho 

s igna l  and noise  c c r r o l u t i o n s  bui; t h c  tots: co r re l a t ion  funct ion of the  

i n p u t  m d  t h o  ccrrclatfon of t>a slzm? cn the t o t a l  input. 

Input  



I n  Iter numerator prediction time conutant. 
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XIV MTZNSIOMS OF VIElER1S SOLUTION 
I --- 

The basio theory  of the optimization technique i s  now complete. The 

remainder of this t e x t  consis ts  of various appl icat ions of the Wiener SO- 

l u t i o n  t o  speoia l  problems. It is the purpose of this mot ion  t o  desoribe 

the various problems. The reader may then se l eo t  t h e  top ios  of par t iou la r  

i n t e r e s t  in h i s  ovrn problem. A servomechanisms engineer, f o r  example, 

would probably so l ec t  the sect: c 5s on quasi-dis tor t ionless  networks, the 

sa tura t ion  cons t ra in t ,  t r ans i en t  e r r o r  minimization, and the  design of 

servomechanisms. 

f ini te- t ime f i l t e r s  and matched filters. 

A radar engineer would probably s e l e c t  sec t ions  on 

The Wiener solut ion provided the necessary mathematical tools f o r  

extensions of his work and f o r  a ULification of o ther  e a r l i e r  efforte. 

The extensions are a l l  i l l u s t r a t i o n s  of t he  f a c t  t h a t  i f  t h e  calculus  of 

va r i a t ions  mrks, -it also works under constraints .  

Section XV 

North, Dwork, and Niddleton independently derived t h e  f i l t o r s  bown 

var ious ly  as matched f i l t e r s ,  comb f i l t e r s ,  North f i l t o r s ,  and Ihvork 

f i l t e r s .  

of a pulse. 

noise output under t h e  cons t ra in t  t h a t  t h e  f i l t e r  dupl ica te  the maximum 

value of the pulse. 

bene f i t  of a more powerfcf technique than was ava i lab le  t o  them. 

These men were in te res ted  maximking t h e  probabi l i ty  of de tec t ion  

Their so lu t ion  was equivalent t o  minimizing t h e  m a n  square 

We w i l l  derive t h e i r  results i n  a f e n  l i n e s  with t h e  

Ragazzini and Zadeh re-derived t h e  Ihvork-North-Eddleton r e s u l t s  for 

a more general  noise spectrum than f l a t  noise and under tho cons t ra in t  t h a t  

t h e  network be real izable .  Our der iva t ion  is a spec t r a l  dens i ty  vers ion o f  

t h e i r  timo-domain solution. 
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Soction XVI 

Ragazzini and Zndeh a l s o  t r i e d  applying the oons t ra in t  t h a t  polynonialr 

i n  t h e  pass through the network without d i s tor t ion ,  

necess i ty  l imited t o  f ini te- t ime f i l t o r s ,  A f i l t e r  which can remember the 

This oonetraint  is Of 

s ta r t  of a polynomial mst,  by defini t ion,  oontain t h e  s t a r t i n g  t ransient .  

Ragazzini and Zadoh roquire t h a t  the ensemble mean square e r r o r  be mini- 

mized over the in torvol  considered. This extension of Wiener's s o h t i o l l  

is straightforward but  d i f f i c u l t  of applioation. The dosign ong3noer u8U- 

a l l y  has t o  solve fivc or  s ix  s imltanoous equations t o  obtain t h e  8olutiOno 

Section AXII  

Tho Ragazzini and Zadeh, f inite-t ime f i l t o r  is usually apFrcxim-3ed by 

t he  so-callod quas i -d is tor t ion less  network, This network passes polynoieals  

without d i s to r t ion  except f o r  tho s t a r t i n g  t rans ien t ,  The quasi-dist0rti .m- 

less network can be optimized using e i t h e r  the P h i l l i p s  o r  Wiener technique-  

Saction m r I  -- ----- 
Newton a t  1L.I.T. arid t h i s  author at J.P.L. considered s y s t e m  in rJhich 

sa tu ra t ion  e f f e c t s  could so disrupt  t he  system as t o  render operation worth- 

less. Both solved t h c  problem by applying a p.ower level cons t ra in t  a t  the 

appropriate systcm point. 

Soction XIX 

The t r m s i s n t  e r ro r  of a system may bo measured i n  rany weys, depcnding 

upon t h o  ci 'rcuit application. One common dcf in i t i on  is the  i n t e g r a l  of the 

transient-squared, Other def ini t ions a r e  ce r t a in ly  possiblc, I n  switching 

c i r c u i t s  the de f in i t i on  might bo the  la;: time of t h e  c i r c u i t  -- t he  t i m e  
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betwoen reoeption of a s t o p  function and the f i r s t  mro of  the t ransient .  

4 4  

k+7' t 
Lag Time 

Both def in i t i ons  are considered in dcriving the  b e s t  t r a n s i e n t  performanos 

undor noise conditions, 

Section 10( 

R. J, Parks at J.P.L. applied Wiener's so lu t ion  t o  guidanco systems 

attempting t o  co r rec t  for oxtornal disturbances,  and hindered by high  

love1 measurement noise. 

in philosophy: 

s a r i l y  a noise in the  expression f o r  error. 

This development demonstrated an important point 

that f(t) is not necessar i ly  a s ignal  and n ( t )  not  neces- 

B G ' ~  may be noise  or both  

signals,  The Wiener so lu t ion  minimizes t h e  "inem square error". defined by 

the e r r o r  equation 

E ( * )  = H(s) N(s) + (1 - H(s)) F(s) 

where F(s) is earrnarkcd s o t  by the designation "signal"' bu t  by being the 

coe f f i c i en t  of 1-H(s). Similarly, N(s) is defined by being the cooff ic ien t  

of H ( s ) .  

Section XXI 

Any e r r o r  equation of t h i s  form is t rea ted  by t h e  Wiener solut ion.  -- 

The last sec t ion  of t he  t e x t  discusses som r e l a t e d  topics:  multi- 

dimensional sys t em,  s h o r t - t i m  e r r o r  sys t em,  cross-correlation dotect icn,  

and decis ion networks. The discussion i s  q u a l i t a t i v e  i n  nature. No 

so lu t ions  are presented. 
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The matched-filtor rosu l t s  prosentod here were part ly  known bcfore, or 

indopsndently of, Tiionor. 

inequality. 

The results were dsrived originally using the  Schvari 

The basio problem vas the detection of b m m  pulse shapes under 

high noise conditions, The original statenont of tho problem asked that, a t  . .  

the output of the detoction system, t he  poak signal  strcngth bo as large 

as  possible re la t ive  t o  the output noise  10~0:. Thin cr i t er ion  ic equiva- 

lent t o  mininieing the mean output noise level under tho cons t ra in t  tksat 

the system duplicate tho signalts peak value. 

The signal is assumed zcro until %?IO (arbitra-7) rofcrzncc tine t = 0, 

I C  then increases t o  its peak value ( o r  a . q  other n l u e  of in teres t )  a t  a 

t i m e  to. 

The system w i l l  n o t  yield f(t) at  other tima unless by coincidencc, 

The constraint TB iqiose i s  t h a t  at t tho system y i e l d  f(to), 
0 

The - 
constraint i s  therefore given by: 

d 

-st F(s) + e O 3i-s) F(-s) 
ds 

The problem t o  be solved is the minimiza t ion  of t h e  output  m a n  spuare noiso  

level under thc constraint, iac., the  mininizotion of 
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Using the same plus and minus subsoript notat ion and teahnique given in the 

Wiener derivation, 

which i6 minimized by letting H+ -3 €I+ 

respect to E at E = 0. The result 5s 
a 

and difforontiating with 
+ c y +  

By exactly the s m o  technique as was used in the Wiener derivation, wo obtain 

( (95) 
Physically Realizable 

H(s) = 

where yn(s) (-s) = g m  and vhore K I s  the  gain constant neccssary t o  
pl 

y i o l d  the desired peak va;ue.* 

bvork solved the  problcm without the restrict5 on of physical real iza-  

bility. His unswor was H( s) = Xs-St?F(-s)/gP. This answer  is physicnlly- 

realizable under cer tain specialized conditions. To mechanize a filter, Drvork 

a8 siuned 5 - =xa2 and that f(t) had a f inite  t i m e  durbtion. As seen above, 
an 

those expeaiencies are unnecessaxy. Under Bv.vkls  conditions t h e  E(s) becorns 

*Note thc caution on ,-“to usage i n  XI1 D. 
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H( E) = F(-s) (96) 

The matahing of H(B) t o  F(-8) results in the name "imtched fi lter" for 

thi'a a(8)o A similar result v a s  derived in the section on ourve fitting. 

The weighting m o t i o n  matched tho form of the signal f ' ~ n o t i o n .  

T h e m  f i l ters  arb of great interest  in radar problems tvhen the gene- 

ral form of tho roturn echo (or chain of echoos) is hown,.but we wish the 

roturn signal to "stand out" of the noise as mch as possible, 

A more general result can be derived $f the signal i s  assumed t o  have 

a statietical part as well as the knovrn f(t). The anmr is 

(971 

Physically 
Realizable 

+ K F(-8) e-sto 

y ('8) 

H ( s )  = 

where 

Problom 3 5 : '  Prove the result abwe. 

Problem 36:. Show t h a t  the i l t e r  to maximize tho ratio of the peak value 
of f(t) = 4 in the presence of noise of spectrump 2 /(1-s2) 
is given by 

1 where the approximation e-x = is assumed. 

The impulsive response and weighting function of a Dvrork "matched 

f i l t c r n  arc of a particularly interesting form. From the Daork expression 

f o r  H(s) we find the impulsive response t o  be 
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The lmpulsivs reaponee therefore etarts vdth a value f(t,) and traoar the 

'Xatched F i l t e r  Impulsive Rcsponse 

The vreighting function dragged down t h g  record thus looks like the first 

part of f ( t )  up t o  t imo  to. For non-flat n o i m ,  this characteristic io no 

1 longer true 

FIGURE 18 

Matchcd F i l t e r  Su?or?osition I 'n tsptr t ion 
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The weighting function of the  more general f i l t e r  given i n  equation (95) 

may be constructed from our knowledge of F(e)  and Y ) n ( ~ ) .  I n  equetian (96) 

the impulsive response of H(s) i s  given Sy the impulsive response of 

. k( - s )e - s to /  y ,(-*)I P,R. passed through the  network l/vn( 8). The im- 

pulsive response of the bracket, however, i s  the  response of a network 

l/Yn(s) t o  f(t) played backwards from to. 

t h e  weighting function of H ( s )  i s  i l lus tra ted  i n  the following sketches. 

The graphical construction of 

2 A function, f ( t )  = a + bt,  and a network y,(s) = 40 + 8 

* 
were assumed, 
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0 

Response of 

I m p 1  si ve 
Response of 

?.E. 

I n i p 1  si ve 
Response of 
N s )  
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Needless t o  say, it is d i f f i c u l t  t o  mechanize a network H(s) which w i l l  

The meohanization of the unusual responm y i e l d  suoh an impulsive response. 

near to would probably roquire dolay l i nes ,  Rising exponentials are per- 

mitted i n  tho i n t e r v a l  Octet,, but such exponentials are prohibi ted for 

t grea ter  than to. The designer must therefore  obtain exact  oancellatian 

of r i s i n g  exponential terms after to, 

- 
Tho optimum network speoified by equation ( 9 s )  is primari ly  useful 88 

a standard of comparison f o r  proposed subs t i tu tes ,  

network yie lds  

The optimum realizable 

Tho optinnun non-reali zable network yields 
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XVI The Finite-Time. Finite-Order, Filtsp 

A f in i te - t ime f i l t e r  l e  one whose impulsive response l ae t s  only f o r  

an interval  T, a f t e r  uhioh it 11 ident ica l ly  zero. 

t r a n s f e r  mnationa are expresaible as quot ien ts  of polynomials In I .  

impulsioa responses correeponding t o  such t r ana fe r  funct ions are thue sum 

of exponentlala in time, 

do not exh ib i t  f i n i t e - t i m e  behavior, 

Most reabily-mechanizablo 

The 

Consequently most readily-mechanizable network6 

The optimization of f in i te - t ime systems is no d i f f e r e n t  than the 

optimization of infinite-time systems, provlded t h a t  our s t a t i s t i c a l  averaging 

is done in an ensemble fashion (over many experiments). For s ta t ionary  inputs, 

t h e  s p e c t r a l  densi ty  approach is still l eg i tba t e ;  error s p e c t r a l  dens i t i e s  

may be used as before. For the  non-stationary or  t h e - v a r i a n t  case. hornever, 

RO must again distinguish between t h e  mean square e r r o r  averaged over an ensemble 

and t h e  man square error averaged over the  i n t e r v a l  T, This text rill consider 

only t h e  ensemble average case, although the i n t e r v a l  average I s  more s l a i f i c a n t  

for t h e  f in i te - t ime case than for t h e  inf ini te- t ime C a m .  

The meaning of t h e  expression, f i n i t e -o rde r ,  is closely connected w i t h  the 

appl ica t ion  of cons t ra in ts  t o  optimization problems. I n  previoua aect ions we have 

discussed cons t r a in t s  which specify response c h a r a c t e r i s t i c s  t o  a f a i r l y  general  
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A s t i l l  d i f f e 2 e n t  set of' constraints were proposed by Zedeh and Ragazzini 

in the first of t w o  articles on the optimization of finite-time systems* 

0 

T 

These n constraints ere usad t o  guarmtee distortion-free passage of a 

s i p ~ i a l  fimcti on 

th rough the system inabmLzh as it. i s  e a s i l y  shovm that  the response of the 

f i l t o r  t o  f ( t )  i s  given by 

Evidently if the best present value of f ( t )  i s  desired,/cCo = 1, 

= 0. Ths I~YITI~?, finite-order, i s  applied 

*I. Zarleh 6: Rnzazzini: An k t e n s i o n  of 'Xanerts Theory, J.A.P. Vol.21,July 1950 
2 .  Zadeh L: ;iagazsir,i: 

I.R. 2.; October 1950. 
Optimum Filters for the Detection of Signals i n  Noise, 
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to t h i s  f i l t e r  because the polynomial l o  of finite-order, n. It might be 

remarked that any function can be inserted i n  constraint form on the system 

expressible as a sum of known functions of time such that the f U A O t i O M 1  

form_ does not change w i t h  a s h i f t  of the time origin. A s  an example: 

y ia lds  the constraint8 
T 
r 

J 
0 
T 
f 

0 

+/yc r I a sin,&t + b coapt] 
b L  

2 
0 
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Tho vnrioua problems considered so far' -- the  V i  mer  smoothing problem, 

the  niorlor o p e r a t i o n a l  problem, and the  matchoir f i l t e r  problem -- could all 
be c o n s t r a i n e d w  s p e o i w n g  h(t  > T) = 0. The constraint spa i fy ing  a f i n i t e -  

ti,m f i l t o r  is evidently 

It I:; o a z i l y  shown that this constraint  adds tho term 

4.0 t h p  H ( s )  already detciminod f o r  the various problems considered. Tho 

y / ( s )  is t h e  ap?rcpriate o m  f o r  the  problem considered, 

c a w ,  1 ( s ) ) '  = 9 + $' + 3 + 9 ; for t he  matched f i l t e r  case 

For t h e  Trimer 

ff fh nf nn 

Inazniuch as nr>t only h ( t )  but- all of i t s  derivatives and i n t e g r a l s  

(from 7)  are a l s o  zerc for  t > T, the most general set of cons t ra in ts  viculd 

rcslllt. i n  the a d d i t i o n  of a term 

t o  t h c  irnrious ,Y(s), 

sents a goneral izod Lal;range m l t i p l i e r .  

The f i x t i o n  C ( 3 )  must yet be determined; it repre- 

Unfortunately, the varichle tl 

is witxiiglod i n  t ; ~ o  answer; it. is n o t  obvious how t o  make the answer in- 

dapondent of ti. 
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Nonetheless, several. sluos &r 8 provided: 

1. Tlio firilta-timo answor will aons is t  of tho infinite-time anewcr 

plus so:ne addit ional  ter~ils. 

2, Tile a d d i t i o n a l  term w i l l  probably be constants, t e r m  of the 

form -4s 7 B3- + ..., ruid terns criiaing frcm the rooto of the 

L m m r  atclr cf yt 3). 
The NYiLhtiaG fixcticln v d l i  he modif ied  both vithir, the interval 

7 

-- 
3. 

Rsl;s i :z i l i i  cu~d 2udeh s;lv5d the prcijlem in t h e  t ine -dsmin ,  

for h ( t )  r r i t h i i t  tha  j r:+,arv;ii 0 

Thair cnswers 

t <T are Liven below.,d 

.- 



If t h e  problem 13 tho best natchsd filter, the  f in i t e - t i rm  unsvmr 38 

( 9 8 0 )  

where T - >to. 
I n  the > a r t i c u l a r  case ~hsri. ths cons t r a in t s  art: given i n  tho  fcrm of 

The miriotis soluticvris can bo ioiibln!d, inasmuch a s  tho l a s t  two prob- 

lams are scilutioxs of t;t;a f i r s t  przhlcm under cons t ra in ts ,  The s-tion 

1, Tri te  t h e  y/ ( s )  

~ ~ o l ~ n o i n i  als : 

"ppropriatc:  for the  p r o b l s n  as n quotient  of two 

- 1  

of 1. Q(s)12 = 0 
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C and D mist bo found w i n g  tho 3. Tho cocf f ic ionts  Ad,  Bj, 
j, 3 

cons t ra in t  oqtmtions and tho appropriate  optimization equations* 

!.!at c h a  
F i l t e r :  

T 

0 

R a p z z i n i  and Zadoh coiisidcrad tho Yfienx-plus-finite-order f i l t e r  i n  their 

first a r t i c l e  and t h e  mtched  filter i n  t h o i r  second. 

Tho f in i te - t im f i l t c r  i s  su5joct t o  the  same d i f f i c u l t i e s  of mchani- 

zatiori that plagued the  matched f i l t e r ,  

comparison, nonetheless, 

It is useful as a standard of 

The f i n i t c - t i n 3  filter i s  useful i n  solving t h e  turn-on problem. The 

tiirn-on problem asks f o r  t h e  bes t  f i l t e r  such that  t he  man squero e r r o r  i s  

miniaized over t h e  i n t e r v u l  froill t; =; 0 (turn-on) t o  the  pre3ent t i m e  t = T, 

The turn-on f i l t e r  i s  therefore a t ino-variant  one depending on tho para- 

m t e r  T, 

The finite-tine f i l t e r  i s  also usefu l  i n  data-reduction work i n  which 

t he  t i n e  in torva l  i s  l i i * ~ t e d  during which c e r t a i n  assumptions might be 

v a l i d ,  F G ~  exapple, cczsider the  pro51am of f i t t i n g  polynomials to 
-- 

*ficndily derivzblc iisiii, thc: tzcldiique ,ivan i n  XI1 i2. ( S O ~  8 5 )  
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sections of a curva of complex shape. Tho polynomials are assumed val id 

o n l j  for short intervals. A finite-t ime i e i g h t i n g  function of appropriate 

duratior,, T, w i l l  proporly perform the f i t t i ng .  

Prohloxn SSa: 17)ut i s  tho optimum finitc-time f i l t e r  t o  puss Q -t bt Un- 
distortod i n  the presonco of noiso Gn ;= 24rr, 2 9 

its- 
2 

Uhut  i s  t h o  optimun finite-tiym f i l t e r  to find the  derivative 
of a + b t ,  undistortad, i n  the presonce of n o i s o c z  = zd rn n - oc -= 

Pro’olcm 38b: - 

Prohlsrn 38c: Find the answers for parts a and b for a noise spoctrum 
H , = d o - s  2 . I - h t  i s  t he  answer if do =fo ? -2 

B o  
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Netwoi*ks &to q u i t e  oommon xhich produce no signal d i s t o r t i o n  i n  the 

steady stat.e. 

DC undistorted after the t rans iont  has lried out, 

networks which pass c e r t a i n  sine. waves and r e j e c t  others. 

A transfer function H(s) whioh satisfies H ( 0 )  = 1 Will pass 

Similarly we may design 

One partioulor 

notwork has recently came i n t o  prominence because of i t s  utility i z I  short 

time duration problems. 

raenr; is completed long bcfore 6 "cycle" might occur, an expansion bf the 

signal in Fourier coefficients is almost meaningless, 

mate oxpnnsjon would be in poirers of t, 

pGl:?nOlnicilS i n  t und5storted i n  t h e  steady s t a t e  is ca l led  a quasi-distor- 

ti ctilesa network, Customri ly  ths name, quas i -d i s to r t ion le s s ,  is applied 

only to networks which leave t h e  polynomial unaffected i n  the steady s ta te .  

It is c e r t a i n l y  possible  t o  perform operations such as tine delay o r  dif -  

f o i e n t i a t i o n  w i t h x t  steady-state d i s to r t ion ,  bu t  these networks are not 

ocmoaly ca l l ed  quasi-di s tor t ion iess ,  

-m pgrform other duties a t  tho same tine. 

h u m  m y  bo rejacted. 

If a s i p a l  is 5 0  slowly varying that tho experi- 

A much more l e g i t i -  

The p a r t i c u l a r  network which passes 

The q u a s i 4 i s t o r t i o n l e s s  network 

Noise m y  be reducedj60 cyole 

The necessary condi t ion  for a network t o  be quas i -d is tor t ion less  to 

a poiyuornial of order n i s  t h a t  i t s  transfer function have matched nume- 

r a t o r  ax? denoinjnntor coef f ic ien ts  t o  Sn0 The network t.ransfer func t ion  

in equation 99 is quasi-dis tor t ionless  t o  t . 2 

a o - t a l  s + a 2 s  2 +a, 8 a 
n(s)  = (99) 
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The proof: 

such t h a t  a l l  8’s represent  d i f fe ren t ia t ion ,  

I n  the steady s t a t o  we may juggle the t r a n s f e r  h c t i o n  aquation 

If %ut = ein = + ,8 t + t2 , t h e  equation i s  satisfied ident ical ly .  

Notice t h a t  t he  values o f  the a’s and b*s hove n o t  been spocified. The 

choice of the a ’s  and b*s  dopends.upon the further d u t i e s  of the network and 

upon the a l l o m b l e  t r a n s i e n t  t im of  tho system. The most usefu l  extra duty 

of the  quesi-dis tor t ionless  network i s  noise  roduction, 

quasi-di s to r t ion le s s  net;rork also must be optimized, although such an opt i -  

mization i s  n o t  very d i r e c t ,  

c e r t a i n  time in te rna l .  

t o  d i e  out as f a s t  a s  possible. 

a short-time woiyhting function and P wide-band system. 

For  this purpose the 

Signals are rarely polynoraials f o r  more than a 

During this i n t e r v n l  vie wish t h e  s t a r t i n g  t r a n s i e n t  

On t h e  other hand, a quick t r ans i en t  implies 

The wide-band per- 

mits a great  d e a l  of noise to pass through the system, The engineor must 

f i n d  the  best compromise, 

Quasi-distortionless neborks  are ac tua l ly  optimum t o  ‘a par t i cu la r  class 

Reinerrbering t h a t  a f l a t  spectrum cons is t s  of  a series of spectral dcnsi t ios .  

of ii:i~mlses, we can set up t h c  following table ,  

;IGNAL - S?ZCTXkL DE:!SI TY I POSSTBLZ T I L 2  I;ZI!CTTON 

1/91 

( 1/s2”) (-1)” 

i npul s e s 

s t eps  ~ 

i 

sect ions of po lponia l r  
of dezree n -  
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Tho steps, ramps, etc. occur in a random manner as we have seen earlier, 

noise speptral density apparently does not a f feo t  the faot that the H ( 8 )  

specified for arnoothing such s igna l s  are quasi-diatortionless in forno* 

Inasmuch as the networks are determined by the niener operation, all co- 

efficients are speoif ied.  No further engineoring compromising is necoasary- 

The 

Problem a: Show that quasi-distortionless networks result as the optimum 
H ( s )  for the  following s i g n a l  and noise spectral densities. 

I__- 

1 Qff 
I I 

4/S2 I 
' I  - I 1 E 2  

The mem square signal values in all these cases are infinite 
due t o  the good probability ( i n f i n i t e  DC energy) that t h e  signal 
will d r i f t  to i- @. 
densi t ies  will-result in non-quasi-di stortionless filters. 
the quasi-distortionless f i l t e r  i s  8 limitiw caser 

Replacing s Pyith"'5: +65 in'the signaI-,spectrd 
Thus, 

* Shovrn by oxainple only. 
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XVIII THE SATURATION CONSTRfUIJT 

Prao t i ca l  system3 are  linear only within c e r t a i n  power l e v e l  limits, A 

system designed t o  handle 1 watt of power w i l l  usua l ly  sa tu ra t e  p a r t i a l l y  by 

5 w a t t s  and t o t a l l y  by 10 watts, 

The optimuxi system, as discussed t o  this paint ,  has assumed perfeot 

l i n e a r i t y  of a l l  components. 

oessive power l eve l s  within the system. 

H(s) in t h e  system below. 

Occasionally this assumption can lea& t o  ex- 

As an example, consider designing 

*----pq -?-IT+ Output 

Control 
Point Notor E = o  

nu 

FIGURE 19 

A Saturable Sjstem 

I n  a perfect ly  l i n e a r  system, H(s) = 4 + so 

t o  tho output power leve l ,  neither of which is i n f i n i t e ,  

a t  the cont ro l  point, hoxever, is infinite, 

The input power level is equal 

Thc power level 

Saturat ion of t h e  network o r  

mctor is  unavoidable. 

The best solLtion to such a problem 

output e r r o r  but keeps the control point  

limits. The output e r r o r  is given by 

2 
- 1  2 

bE - - 
2TT j 

is t he  one which minimizes the 

power, q within spec i f ied  
2 
G *  



EP 201 

- 104 - 
whero H is the motor transfer function 1/(1 +s). 

the contrpl 2oint  is 

Tho povrer level at 
ZA 

The q u c n t i t y  t o  be minimized is, therofore, 

The minimization might be done by the standard technique, A useful short- 

c u t  my be used in cases similar  to this, however. Tlie s h o r t c u t  oonsists 

of re-writing t h o  o q u n t i m  of interest (102) so t h a t  it resembles an oqua- 

t i o n  that has already boen solved. In t h i s  particular case ne note the 

genera l  roserhlanco of equat ion  102 t o  the cquatj.on doscribing the man 

square error in the stsn6ard Wiener snocthing problem: 

-3 00 

m 
In this standnr2 smoothing equation, 2 and e 5 

ff 
feed. II (s )  5 s  to bo found, A substitution W ( s )  

are complctoly speci- 

= H(s)  %(SI yie lds  

2 
This problam has already Seer, solved for n(s) if gffh%(s)] is thought 



of a8 an "bquivalont noise  spoctrum". 

forward t o  show that 

Using t h i s  shortcut ,  it i~ s t r a igh t -  

la t h e  problom i l l u s t r a t i n g  control  of ai p a r t i c u l a r  motors 

If t h e  power cons t r e in t  xere not present  { 2 = 0) -IPO mould obtain the 

oxpcctod answer H ( s )  = 1 + 8 .  If tha  power cons t r a in t  i s  very severe 

( la rge  values of 3 then H(s)+ . , descr ib ing  an attenuator. 
A ( 1  +Qo -B 6 

The value of is ohoson t o  yield the s p e c i f i e d  - 
C 

Thc sa tura t ion  cons t ra in t  can usua l ly  be applied and solved i n  the 

shor tcu t  manner i l l u s t r a t e d .  The equatiod t o  be minimized is re-wri t ton 

in  tho  standard smoothing form. 

d e n s i t i e s  are dofinod, 

Xzw equivalent  s i g n a l  and noise  spec t r a l  

The smoothing answer i s  w r i t t e n  immediately and 

used  t o  find t h e  answer t o  t h e  original problem. 

Problem 4-0: Solve t h e  standard smoothing problem under t h e  cons t r a in t  that  
t h c  output noiso power be l imited t o  a spec i f ied  value. 
t h a t  t h i s  problem i3 equivalont to weighting noise o r r o r  and 
s igna l  error differunt ly .  

Notioe 
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Problem M: Solve for t he  I I (8 )  giv ing  the  minimum out ut noise level In the 
transmission system below. Assume that gf= and I - 

a, and that  the transmitter power is limitod t o  a 

fixed value, P T. 
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.yIX TRANSIESJT mROR 12INIh4IWTION 

The optimization toohnique m y  be a p p l i e d  t o  other problem than the 

minimization of menn square errorr h g i n e e r s  designing oontrol system are 

usually in te res ted  i n  a dosign giving the minisum t r ans i en t s  t o  oertain 

specified input signals. The def in i t ions  of minimum t rans ien t  a re  varied. 

One cormnon specif icat ion asks t h a t  the i n t e g r a l  of the equare of the  tran- 

s i e n t  be os small as possible.* If E(t)  is t he  t rans ien t ,  f ( t )  t h e  - known 

input, and H ( s )  the system t r ans fe r  function, then 

If t h e  minimization of this i n t eg ra l  were t h e  only requirement there  would 

be LO problem. H ( s )  = 1 satisfies this condition. Typically, the  constraints  

a re  those of proper performance i n  the prosenoe of noise or  operation within 

a specif ied powor level. 

I The def in i t ion  of t rans ien t  e r ro r  is almost like the  definition of 
s igna l  d i s to r t ion  i n  the spcc t r a l  density case,  except t h a t  i n  tho l a t t e r  
case, we tako a time average. 

Transient Error 

S igna l  Distor t ion 
i n  Spcctral  Density = l i m  - 1 1 &2(t)  dt 
Problom T W  T 

0 



For exan?ple, considcr ri3nImizing the t rans ien t  error of tho system of figure 19 

under the cdndition t h a t  the  output noise lovol be lese than co 2 

FIGURE: 19 

I l l u  s trfr t i v o  System 

The integral t o  be minimized is therefore 

0 

The 

The 

equation is almost an'cxact copy of the  Viener smoothing problem equation. 

answer is therefore  

H ( s )  = 1 
Physically Realizable (107) 

where/y/(8)12 = IF(s)I2 + A  En and where 3 i s  so chosen t h a t  t h e  output noise 

level be less than go . 
is the same as t h a t  f o r  8 signal  spectral  densi ty  

Therefore the Yliener solution minimizes the t rans ien t  e r r o r  t o  a single 00- 

currence of Y,,cs) whore\V/f(s)\ = 

2 Notice from equations 106 and 107 t h a t  the solution 

= n\F(s)/  where n = 1. rf 

2 

Problem 4L: Minimize the man square noise ou tpu t  of a system under the con- 
s t r n i n t  t ha t  the t ransient  eiror due to a s tep input  be less than 
S O ~ G  specified constant E. 

- 
2 Assume gn = n . 



Problem 43: Kifijrn; t e  the  mean squeru noise output of a s y s t e m  under the double 
constraint t h a t  the tracsient error t o  a step be El and to a 

- 

ramp, E2. Asstme sn = n 2 . 
Tho definit ion o h s o n  for t r amien t  error dopentls upon the system. For 

example, ooiisider the p r o k l e m  of quick-closing a switch with a s t e p  iqxt 

badly contardneted w i t h  noise. 

Assum that  the  sv5txb c l sses  and locks upon roception of a voltage of l eve l  V. 

The criterion for cjptimization is t l l e  minimization of the  lag t i m e  of the cir- 

c u i t  wider the const-rhlnt. that. t.he oxitput noise l eve l  be less than (V/lO) . 
The la(: t i im is def ined as t?ie t i ne  i r i t e rvo l  between the str& of a (noise- 

2 

f r ee )  s t e p  mc': t he  instmt. that  tho c i r c u i t  output f i r s t  machos V. 

-1 I- 
lag tiirrc to 
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The time t h a t  t h e  c i r c u i t  reaches V is given by 

j? 

The problem is considerably simplified by use' of t h e  syrmnetry condi t ion of 

t h o  calculus of var ia t ions .  

l evo1  f ixed,  ninimize the output noise  level with to fixed. 

however, is equivalent  t o  the c o n s t r a i n t  & (to) = 0, 

Instead of vinindzing t, with t h e  output noise 

Fixine to, 

Therefore the i n t e g r a l  

The c o n s t r a i n t  i s  w r i t t e n  as functions of S(s) and H ( - s )  f o r  convenience. The 

i n t e g r a l  equation, however, i s  exac t ly  t h e  same as that. used i n  the matched 

f i i t e r  der ivat ion.  The answer i s  t h e r e f o r e  

where R i s  a gain constant  t o  be detem5ned. ly  (.)I2 = $ and where to ia 
n n 

the l a g  time. The s o l u t i o n  is completed by f i n d i n g  the r e l a t i o n s h i p  'between 

2 t.he o-dtput noise  l e v e l  and to. If Gn = n , t h e  best h(t) is a constant  of 
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2 2  

heicht l/to l a s t ine  for to scoonde. The output no i se  love1  is = P /toe 

The ou tpb t  t o  a stop i npu t  i . 8  a ramp funotion, 0 a t  t = 0 and v a t  to* 

nally s p a c i f i e d ,  to = 1 C h ' f l  seoonda. 
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XX THE DESIGN OF SERVOI~ECHANISGIS 

nvc major techniques have been presentad which may be used to des ign  

somomechnnisms operating i n  t h o  presence of intorforenoe. The f i r s t  50 

the  P h i l l i p s  technique. 

a s  a funct ion of the input spec t r a l  dens i ty  constants  and of the  adjustable  

The mean square error  of tho system is expressed 

parametors of t h e  system. The moan squere e r r o r  is then minimized by proper 

adjustment of' the p a r o t e r a .  The complete form o f  the s y s t e m l a  specified. 

The second major technique s t e m  from Wiener's optimization solution. 

Tho system is mow assumed known except for a transfer function H ( 8 ) .  1% is 

t h e  goal of  the techniqum t o  specify H ( s )  completely, In a servomechanism, 

such a spec i f i ca t ion  deternines the loop trnnsfer funct ion,  t h e  loop gain, 

and t h e  loop  t r a n s i e n t  behavior. 

i 1 lustra te d be 1 ow. 

For example, consider the  simple asmo 

FIGURE 20 

A Simplo Serpomechanism 

Given Hl(s), what i s  tho best design fo i  H ( s )  t o  y i e l d  the  minimum mean 

square fo l lowing  e r ror?  The solut ion here is most simply achieved by re- 

p lac ing  the whole servo w i t h U ( s ) ,  
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Knowing W ( s )  and H l ( s )  we solve f o r  H ( s )  t o  complete the problem. 

important feature of th i s  tochnique i s  the complete specif icat ion of H ( s )  

and consequently of thc whole loop. 

The 

Scvomechanisms designed in this manner quite often run afoul  of power 

l imi ta t ions .  A s  we have seen*, however, power level constraints may be added 

without d i f f i cu l ty  and the problem usually solved by defining equivalent 

noise and signal spectral densities.  

If tho servo i s  asked t o  perfom an oprat ion,  H2(s), rather than simply 

following the input, the best design i s  evidently given by 



- 114 

The foregoing i l l u s t r a t i v e  semt is e quiot sorvo in t h o t  no noiso or 

disturbance i s  introduood within tho loop i tself .  

DOITO can a l so  be solved, however. 

t h i s  author 's  knovrlodp by R. J. Perks of J.P.L. 

noisy servo. 

The problem of the  noisy 

This so lu t ion  was f i r s t  demonotratod t o  

Consider t h e  following 

FIGURE 21 

A Noisy Servomechanism 

The second noiso, np( t ) ,  might be measurement e r r o r  of t h e  output such 8 8  

pctentiomcter noise  from an output pos i t ion  indicator .  

connected together by radio l inks ,  n2(t) might be atmospheric s t a t i c .  

i l l u s t r a t i o n ,  assumc tho  servo is t ry ing  t o  follow f ( t )  and tha t  a l l  signals 

and noises  are icdependeiit of each other. 

If t h o  servo is 

For 

The error of such a system is: 

The problcmwil l  be solved by reducing it t o  an cqu.ivalent smoothing pro5lom* 

* For a s i z p l e r  i l l u s t r a t i c n  of t h i s  method of so lu t ion  see sec t ion  XVTII. 
Raducing a problcn t o  the  equivalent standard smoothing problcm l e t s  us use 
t h e  stzntlsrd smoothing answer. The d i r e c t  rethod involves another cory lo te  
der ivat ion.  
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This par t i cv ln r  reduction i s  espcclclly in teres t ing  bocause it i l l u a t r a t e o  

t h e  us0 of cross-spectral d e n s i t i e s  in a so lut ion even thou&h a l l  the ori- 

ginal inputs are assuxad unoorralotod. 

Reviewing t h e  quiot servo, not ice  that  the so lut ion vms s impl i f ied  l g ~  

using V ( a )  instend o f  li(s) before s tart ing  tho operations of factor ing ,  o 

The noisy servo solution i s  quite eimilar, 

d i f f  crcnt. 

The subst i tut ion i s  8lightly 

;o 0 

The equivalent s i s a l  and oquivrtlont noise ore defincd by analogy to the 

simfle smoothing error oquution: 

~ ( s )  = (1 -V )  f l (s)  + W n * ( s )  (1151 

Equivalent S i p a l *  = H1nl + B l F a  P (1161 

~quiva~ent ~ o i s o *  =-(n2 + F) 

Thus, t h e  eq~ivalcnt s igna l  ond noise am 

Botice ths cross-correloticn bctwcon oquivc lmt  s igna l  and equivalent noise 

duo t o  tho projcnco of F i n  b o t 3  functions. 

* Neither ths equivalent s i g n a l  nor t h e  equivalent noise may be f'unctions 
of t he  unhown E ( s )  by d e f i n i t i o n  of the hasic Tiienor problem. 
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Krit ing t h c  equivfalant ( p i m d )  s ~ e o t r s l  densities: 

The s o l u t i o n  m y  be written by annlcgy to the s j q l o  smooth5ng problom 

and vhere 

(119) 

1 + I$(s )  H(s) 

Fa icteresting po in t  is Srivea homo if we allow f ( t )  t o  be zero. No 

fOrn31 signal enters the network, only disturbances. Tho e r ro r  of tke 

systsn is st i l l  cxprsssible In LIZ ecplvnlsnt  smoothing f o m .  The equi- 
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Problom 44: Design tha system below t o  bost oountoract wind disturbanoes 
under sovcre meusursrmnt error conditione. 

----- 
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XXI ilELATED TOPICS - 

This t e x t  has ondoavored t o  present ce r t a in  fundamentals of linear 

system design. 

3 gnored. 

A t  l o u s t  four re la ted  eubjocts hove been almost totally 

A. hlulti-dimensional System 

The system discussed have a13 boen one-dimcns:.mal. A multi- 

dimensional system would be one where the best o p e r a t i o n s  on many di f fe ren t  

(but related) phonomna were t o  bz spacifiod, 

D. Short-time Error Systsns 
, -  

I n  c s r t a i n  cescs i n  G-hich %lis tottl t f m  cf cpcretion is short ~ o m -  

pared t.0 t h o  tj4w necessary t o  reach stTady s t a t e ,  ths long-tine overage 

Gf 3 Day be unimportant. It-may 97en be p r o f i t a b l e  t o  design an unstable 

system, 

c) z. 

As an cxaxple, consider tho  in t eg ra t ion  cf a function in the 

prcsencs of f l a t  noise, I'iith tho  system at r c s t  u n t i l  t ='O, t h e  output 

error a t  t = 0 w i l l  be zcro. ht t = g0, h o ~ e v e r ,  t h e  mean square e r r o r  

is i n f in i t c .  At intormodinte t ines ,  thc expcctcd error may s t i l l  be 

acccpfal lc .  

C, Cross-correlation Dotection 

If t h o  cxcct C , i x  dcpcndence of a signal is lmown except f o r  o. fen 

paraTnetErs, t he  ?ammeters m y  be detorndnod by co r re l a t ing  thc t o t a l  

hpt. with a l o c c l  s igna l  o r  s e t  of signals,  

m y  be det -c tcd  in thc presence of noisc by c ross -cor re la t ing  tho t o t a l  

For example, D sine wave 

i n p u t  with a local sine wavo i n  phas3 with the  incoming sine vav0. 

tschniquc i s  w i d e l y  used under the n w o s  prodcct de t ec t ion  ar,d cross- 

c o r r c l s t i o n  dotcction. 

The 

Such dctoctior, s-rsterns arc inhcrcnt ly  i o t t o r  
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Uultiplior Lo-Pass 

than auto-coimlation detectors but are more oomplox i n  requiring a stable 

local  8 0 U E 0 8 .  

Local Oscillator 
s in  at 

Output = a(t) +. smaller tenna 

A Comparison of Auto-Corre1ation Detection with Cross-Correlation Detection 

De Decision IJetworks 

The cross-correlation detector i s  a good example of a system ue.ng 

Figure 22, for example, the exact frequency and phase of the modulation 

sine vJave wcre kn0;m. 

Decision networks provide another examplo of n high debrce of. a p r i o r i  

knowledge. If l i t t l e  but the spectral density of a signal i s  'mown, the 
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system must be able t o  produoe an i n f i n i t y  of possible  output values. On 

tho o t h d  hand, If it i s  known beforohand that  the signal i s  either 011 or 

o f f ,  and that it conoists  of a puro sine wave of knovm amplitude and phase, 

the  problem i s  quite dicforont. 

prcoonco of h o t i o n s  are examples of tho gonoral class, "decision not- 

Notworks which decide the question of the 

tvorks." Such networks two often non-linoar. The deoision 5s oftel l .  

indicnLcd by tho openin;; or closinz of a switch. 

dozi,pad usin& the stat: s t i c a l  tachniqucs of Nopan-Ponrson, Siogort, 

and Ilald. 

Decision networks are 



REFCRZlICZ LIST 

I. Tho C r i t e r i a  f o r  Optixun -- 
A. BoZe & Shanyon: Linear b a s t  Squaro Snoothing and Prediction --- 

T h o 3 ,  A p r i l  1950 IRZ, p a p a  424 ~~~:-'"Discussion of t'F;e 
Basic A s s i ~ i t i o n , "  
- 

B. Tiionor: S t a t i o n a r y  Time  Saries, p a p  13 

C, Lawnon m d  Uhlonbock: Throskhold Signals ,  pagos 149-151, --- 
16 1-167, 

. I). Golay: C o r r o l n t i m  VS. Linaar Transf3rms, Febmary 1953 IREa - 
pa;es 26TaTd769 . 

11. Elenenttiry Calculus cf Variat ions --- 
A. ?;ouston: Principles ;f IJathcmatical Physics,  Chapter V, 

----.- 
p e e s  53 - 61, 

B. Siener:  S ta t ionary  Tine S e r i e s ,  page 14 

111. Constraints  - - 
A. IIouzton: P r l c c i ? l e s  of Ihthomatical  Physics, Chapter V, - --e-- 

y q e s  53 - 61 

B. P h i l l i p s :  Analytical  Geoinetry and Calculus, Chaptor X I T I ,  -- -- 
Scctior, 209 

IV, The Curvo F i t t i n 2  Prcllcin nzC Zeight ing Functions 
' --- - - - - - . _ ~  -__.---_I_- 

A. Kemey: Mcthematics of  S t a t i s t i c s ,  pages 145 - 150, (The 
-____-I_ _--- -- - -- - 

C l R S S i C . c i 1  trcetncnt] paces 152-153, ( r c l a t i v c  t o  problem 6 2 

t h i s  f i t  i s  not t hc  best i f  tho xioise is on y.) 
- - 

B. Ecol: Introduct ion t o  Idathermtical S t a t i s t i c s ,  Chnptar V, --- -I 
paLe P 7 T - Z E . 7 -  



- - 122 -- - 
B X B L I O G F i A ~  

Y i Q  URIER AND LAPIACe TRhIJSFOW 

A. Cardnar and Earnest Transients In Llnear Syatemg, Chapters 111 arrd 

B, Wiener: Stat lonarv Tima Serie8, pages 25-31, 36-37, 53-55 

C, Jame8, Nichols, 6 Phi l l ips :  Theory of Sarvomechanlama, Chapter 2. 
pages 23-62 

VI THE SUPERPOSITION INTEORAL 

A, Jameg, Nichols, & Phi l l l pa i  Theory of Servomechanism, Chapter 2, 
P36es 9-40 

B, Gardner and Barnes: Wanalents i n  Linear System, pages 228-236 

VI1 CORRELATION FVNCTIONS 

A. Jams. Nichols, and Phillips: Theory of Servorriechanisms, pges  270- 
278. 
of t h a t  used i n  t h i s  tex t .  

Note: Subscript  convention used by these authore i a  t h e  revereo 

VI11 SFECTRAL DEIJsrrY 

A, James, Nichols, andPhil l ips:  Theory of Servomechanisms, .pages 27&- 
291 

E. Lawaon and Ublenbeck: Threshold S i m a l s ,  Chapter8 3 and 4. Note: 
These authors use a s p c t r a l  densi ty  defined over positive frequenclaa 
only. 
density being twice t h a t  used i n  t h i s  text. 
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